Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Next Generation” Means for Detecting Squeaks and Rattles in Instrument Panels

1997-05-20
972061
Engineers doing squeak and rattle testing of instrument panels (IP's) have successfully used large electrodynamic vibration systems to identify sources of squeaks and rattles (S&R's). Their successes led to demands to test more IP's, i.e., to increase throughput of IP's to reflect the many design, material, and/or manufacturing process changes that occur, and to do so at any stage of the development, production, or QA process. What is needed is a radically different and portable way to find S&R's in a fraction of the time and at lower capital cost without compromising S&R detection results.
Technical Paper

the advantages of the new SAE standard for INVOLUTE SPLINES from a design standpoint

1959-01-01
590056
INVOLUTE SPLINES enjoy three major advantages over their straight-sided counterparts: 1. New design concepts have given a more rational approach to clearances and errors. 2. Manufacturing is cheaper and more accurate. 3. Gaging is simpler. Thus, the involute spline standard of SAE and ASA continue to take precedence over the older straight-sided standards.
Technical Paper

and Repeatability of Transient Heat Release Analysis for Heavy Duty Diesel Engines

2009-04-20
2009-01-1125
Reduced emissions, improved fuel economy, and improved performance are a priority for manufacturers of internal combustion engines. However, these three goals are normally interrelated and difficult to optimize simultaneously. Studying the experimental heat release provides a useful tool for combustion optimization. Heavy-duty diesel engines are inherently transient, even during steady state operation engine controls can vary due to exhaust gas recirculation (EGR) or aftertreatment requirements. This paper examines the heat release and the derived combustion characteristics during steady state and transient operation for a 1992 DDC series 60 engine and a 2004 Cummins ISM 370 engine. In-cylinder pressure was collected during repeat steady state SET and the heavy-duty transient FTP test cycles.
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

World Wide Escort/Lynx Engine Design and Development

1981-02-01
810008
In 1981, Ford Motor Company introduced a new family of fuel efficient four cylinder engines world wide. These engines, based on a compound valve arrangement in a hemispherical combustion chamber, were specifically designed for installation in light weight front-wheel-drive vehicles. Ford Research efforts were integrated with the resources of Ford U.S. and Ford of Europe to design and develop the engine in a compressed time frame. The technical and organizational efforts to accomplish this task, as well as, the design and development are discussed.
Technical Paper

Windshield Wiper System Motor Selection and Application

1971-02-01
710257
The selection of a motor for a windshield wiper system requires a full analysis of all system variables, in addition to strict adherence to tests and development procedures. Following a well-programmed procedure will assure complete and adequate windshield wiper prime mover selection and successful application. There are five basic steps discussed: 1. Determination of wiper parameters. 2. Motor performance. 3. System load determination. 4. Calibration and matching of wiper motor to system. 5. Testing and evaluating.
Technical Paper

Windshield Wiper Linkage Analysis

1971-02-01
710254
The Kinematic Analysis Methods Computer Program that has been used by Ford Motor Co. to evaluate mechanisms for the past four years has been modified to generate performance curves for windshield wiper linkages directly using a Calcomp Plotter. Problems such as stalling, “jerky” operation, and excessive phase lag between wipers can be detected early in the design stages by careful evaluation of the curves.
Technical Paper

Wind Noise and Aerodynamic Drag Optimization of Outside Rear View Mirrors

1993-05-01
931292
Automotive outside rear view mirror shape has become an important consideration in achieving wind noise and aerodynamic performance objectives. This paper describes a two step process used to develop a mirror shape which meets both wind noise and aerodynamic objectives. First, basic understanding of door mounted verses sail mounted mirrors and shape parameters was obtained by evaluating selected shapes and studying their physical measurements relative to their measured responses. Relationships between the wind noise and drag responses revealed performance range limitations for sail mounted mirrors. Second, a central composite experimental design was utilized to more closely investigate door mounted mirror shape parameters to determine optimal mirror performance potential. The resulting empirical models developed were used to determine the best overall solution.
Technical Paper

Wind Noise Spectral Predictions Using a Lattice-Based Method

1999-05-17
1999-01-1810
The current ability of the Virtual Aerodynamic/ Aeroacoustic Wind Tunnel to predict interior vehicle sound pressure levels is demonstrated using an automobile model which has variable windshield angles. This prediction method uses time-averaged flow solutions from a lattice gas CFD code coupled with wave number-frequency spectra for the various flow regimes to calculate the side window vibration from which the sound pressure level spectrum at the driver's ear is determined. These predictions are compared to experimental wind tunnel data. The results demonstrate the ability of this methodology to correctly predict wind noise spectral trends as well as the overall loudness at the driver's ear. A more sophisticated simulation method employing the same lattice gas code is investigated for prediction of the time-accurate flow field necessary to compute the actual side glass pressure spectra.
Technical Paper

Wind Noise Sound Quality

1995-05-01
951369
Wind noise is the sound made as air rushes over a moving vehicle. As other vehicle sound sources are improved, the wind noise becomes the dominant source under certain conditions. The purpose of this paper is to examine the relationship between the properties of wind noise and the human perception of this sound.We find that a particular loudness measure (Zwicker loudness as defined in IS0532B) is the prime factor governing the customer perception of wind noise.
Technical Paper

What Is Acid Rain and How Does It Affect Our Environment?

1982-02-01
820290
Acid rain in the U.S. is becoming a major environmental issue. This paper reviews the known information regarding pollution sources, impact on the environment and the role of the automobile in acid rain. Although natural sources of sulfur and nitrogen pollutants are equal to or greater than man-made sources on a global scale, many scientists believe man's activities are the major cause of high levels of acidity. Attempts to relate specific sources of SO2 to specific acid rain events in the northeastern U. S. have been unsuccessful. The roles of tall stacks, long range transport and dry vs. wet deposition are incompletely understood. Temporal and geographic trends in acidity are not well defined except for increased acidity in the southeast. About 30% of the acidity in rain in the northeast is due to HNO3. In the process of utilizing nitrates as a nutrient, plants partly neutralize the affect of HNO3 in the rain.
Technical Paper

Weldability Prediction of AHSS Stackups Using Artificial Neural Network Models

2012-04-16
2012-01-0529
Typical automotive body structures use resistance spot welding for most joining purposes. New materials, such as Advanced High Strength Steels (AHSS) are increasingly used in the construction of automotive body structures to meet increasingly higher structural performance requirements while maintaining or reducing weight of the vehicle. One of the challenges for implementation of new AHSS materials is weldability assessment. Weld engineers and vehicle program teams spend significant efforts and resources in testing weldability of new sheet metal stack-ups. In this paper, we present a methodology to determine the weldability of sheet metal stack-ups using an Artificial Neural Network-based tool that learns from historical data. The paper concludes by reviewing weldability results predicted by using this tool and comparing with actual test results.
Technical Paper

Weight Effect on Emissions and Fuel Consumption from Diesel and Lean-Burn Natural Gas Transit Buses

2007-08-05
2007-01-3626
Transit agencies across the United States operate bus fleets primarily powered by diesel, natural gas, and hybrid drive systems. Passenger loading affects the power demanded from the engine, which in turn affects distance-specific emissions and fuel consumption. Analysis shows that the nature of bus activity, taking into account the idle time, tire rolling resistance, wind drag, and acceleration energy, influences the way in which passenger load impacts emissions. Emissions performance and fuel consumption from diesel and natural gas powered buses were characterized by the West Virginia University (WVU) Transportable Emissions Testing Laboratory. A comparison matrix for all three bus technologies included three common driving cycles (the Braunschweig Cycle, the OCTA Cycle, and the ADEME-RATP Paris Cycle). Each bus was tested at three different passenger loading conditions (empty weight, half weight, and full weight).
Technical Paper

Wear Protection Properties of Flexible Fuel Vehicle (FFV) Lubricants

1993-10-01
932791
A laboratory wear test is used to evaluate the wear protection properties of new and used engine oils formulated for FFV service. Laboratory-blended mixtures of these oils with methanol and water have also been tested. The test consists of a steel ball rotating against three polished cast iron discs. Oil samples are obtained at periodic intervals from a fleet of 3.0L Taurus vehicles operating under controlled go-stop conditions. To account for the effects of fuel dilution, some oils are tested before and after a stripping procedure to eliminate gasoline, methanol and other volatile components. In addition to TAN and TBN measurements, a capillary electrophoresis technique is used to evaluate the formate content in the oils. The results suggest that wear properties of used FFV lubricants change significantly with their degree of usage.
Technical Paper

Wave Propagation in Catalytic Converters: A Preliminary Investigation

1997-05-20
971873
The present study investigates the wave propagation and attenuation in catalytic converters. The relationships for wave propagation in a catalytic monolith are derived first and then coupled to the wave propagation in tapered ducts. Analytical predictions are compared with experimental results to validate the theory.
Technical Paper

Wall Permeability Estimation in Automotive Particulate Filters

2023-08-28
2023-24-0110
Porous wall permeability is one of the most critical factors for the estimation of backpressure, a key performance indicator in automotive particulate filters. Current experimental and analytical filter models could be calibrated to predict the permeability of a specific filter. However, they fail to provide a reliable estimation for the dependence of the permeability on key parameters such as wall porosity and pore size. This study presents a novel methodology for experimentally determining the permeability of filter walls. The results from four substrates with different porosities and pore sizes are compared with several popular permeability estimation methods (experimental and analytical), and their validity for this application is assessed. It is shown that none of the assessed methods predict all permeability trends for all substrates, for cold or hot flow, indicating that other wall properties besides porosity and pore size are important.
Technical Paper

WHERE DOES ALL THE POWER GO?

1957-01-01
570058
AS a basis for the analyses of this symposium, a hypothetical car has been used to evaluate the engine power distribution in performance. Effects of fuel,-engine accessories, and certain car accessories are evaluated. The role of the transmission in making engine power useful at normal car speeds is also discussed. Variables encountered in wind and rolling resistance determinations are reevaluated by improved test techniques. Net horsepower of the car in terms of acceleration, passing ability and grade capability are also summarized.
Technical Paper

Viscosity Prediction for Multigrade Oils

1993-10-01
932833
The variation of viscosity with temperature and shear rate plays an important role in the analysis of lubrication of automotive systems. In this paper, a method for predicting the viscosity of non-Newtonian fluids, such as multigrade engine oils, over a wide range of temperatures and shear rates is outlined. This expression determines viscosity parameters for shear thinning fluids in terms of easily measured viscosity values at some reference state. A comparison of predictions with experimental data suggests that viscosity for multigrade engine oils can be predicted to within experimental uncertainty. The proposed method can be used in assessing lubricant viscosity at shear rates greater than 106 s-1, which are beyond the capability of current laboratory instruments. A comparative study with multigrade oils shows that performance at very high shear rates cannot be accurately gauged from high temperature, high shear (HTHS) viscosity measurements.
Technical Paper

Virtual Engine Dynamometer in Service Life Testing of Transmissions: A Comparison Between Real Engine and Electric Dynamometers as Prime Movers in Validation Test Rigs

2010-04-12
2010-01-0919
A test cell was developed for evaluating a 6-speed automatic transmission. The target vehicle had an internal combustion 5.4L gasoline V8 engine. An electric dynamometer was used to closely simulate the engine characteristics. This included generating mean torque from the ECU engine map, with a transient capability of 10,000 rpm/second. Engine inertia was simulated with a transient capability of 20,000 rpm/second, and torque pulsation was simulated individually for each piston, with a transient capability of 50,000 rpm/second. Quantitative results are presented for the correlation between the engine driven and the dynamometer driven transmission performance over more than 60 test cycles. Concerns about using the virtual engine in validation testing are discussed, and related to the high frequency transient performance required from the electric dynamometer. Qualitative differences between the fueled engine and electric driven testing are presented.
X