Refine Your Search

Topic

Author

Search Results

Technical Paper

Trends in Exhaust Emissions from In-Use California Light-Duty Vehicles, 1994-2001

2002-05-06
2002-01-1713
Major efforts to control motor vehicle emissions have been made in recent years, both through improved emission control technologies and through gasoline reformulation. Our assessment of the impacts of these efforts was conducted in the San Francisco Bay Area, in lanes of a highway tunnel where heavy-duty vehicles are not allowed. This study focuses on the afternoon rush hour, during which over 4000 vehicles per hour travel uphill through the tunnel. Concentrations of CO, CO2, NOx, and total and speciated non-methane organic compounds (NMOC) have been measured during summers 1994-1997, 1999, and 2001. Emission factors for CO, NMOC, and NOx decreased by factors of 2-3 over the 7-year period between 1994 and 2001, with CO and NMOC showing greater percentage reductions than NOx. From our data, fleet turnover appears to have a greater overall impact on exhaust emissions than fuel changes for most pollutants.
Technical Paper

Thermodynamic Properties of Methane and Air, and Propane and Air for Engine Performance Calculations

1967-02-01
670466
This is a continuation of the presentation of thermodynamic properties of selected fuel-air mixtures in chart form, suitable for utilization in engine performance calculations. Methane and propane, representative of natural gas and LPG are the two fuels considered. Using these charts, comparisons are made between the performance to be expected with these gaseous fuels compared to octane, as representative of gasoline. Reduced engine power is predicted and this is confirmed by experience of other investigators.
Technical Paper

Thermodynamic Properities of Octane and Air for Engine Performance Calculations

1963-01-01
630075
A digital computer and special program were used, along with new thermodynamic data, to recalculate and extend the scope and range of the classic combustion gas charts of Hottel and co-workers. A series of hydrocarbon and nonhydrocarbon fuels was treated over a range of fuel-air ratios, with temperatures extended up to 7200 R and pressures up to 15,000 psia. This, the first paper of a series, incorporates the resulting charts for isooctane at four mixture ratios ranging from 20% lean to 40% rich. Auxiliary charts for inducted mixture properties determination and a set of sample calculations are also included.
Technical Paper

The Effect of Oxygenates on Diesel Engine Particulate Matter

2002-05-06
2002-01-1705
A summary is presented of experimental results obtained from a Cummins B5.9 175 hp, direct-injected diesel engine fueled with oxygenated diesel blends. The oxygenates tested were dimethoxy methane (DMM), diethyl ether, a blend of monoglyme and diglyme, and ethanol. The experimental results show that particulate matter (PM) reduction is controlled largely by the oxygen content of the blend fuel. For the fuels tested, the effect of chemical structure was observed to be small. Isotopic tracer tests with ethanol blends reveal that carbon from ethanol does contribute to soot formation, but is about 50% less likely to form soot when compared to carbon from the diesel portion of the fuel. Numerical modeling was carried out to investigate the effect of oxygenate addition on soot formation. This effort was conducted using a chemical kinetic mechanism incorporating n-heptane, DMM and ethanol chemistry, along with reactions describing soot formation.
Technical Paper

Sulfur Tolerance of Selective Partial Oxidation of NO to NO2 in a Plasma

1999-10-25
1999-01-3687
Several catalytic aftertreatment technologies rely on the conversion of NO to NO2 to achieve efficient reduction of NOx and particulates in diesel exhaust. These technologies include the use of selective catalytic reduction of NOx with hydrocarbons, NOx adsorption, and continuously regenerated particulate trapping. These technologies require low sulfur fuel because the catalyst component that is active in converting NO to NO2 is also active in converting SO2 to SO3. The SO3 leads to increase in particulates and/or poison active sites on the catalyst. A non-thermal plasma can be used for the selective partial oxidation of NO to NO2 in the gas-phase under diesel engine exhaust conditions. This paper discusses how a non-thermal plasma can efficiently oxidize NO to NO2 without oxidizing SO2 to SO3.
Technical Paper

Spatial Analysis of Emissions Sources for HCCI Combustion at Low Loads Using a Multi-Zone Model

2004-06-08
2004-01-1910
We have conducted a detailed numerical analysis of HCCI engine operation at low loads to investigate the sources of HC and CO emissions and the associated combustion inefficiencies. Engine performance and emissions are evaluated as fueling is reduced from typical HCCI conditions, with an equivalence ratio ϕ = 0.26 to very low loads (ϕ = 0.04). Calculations are conducted using a segregated multi-zone methodology and a detailed chemical kinetic mechanism for iso-octane with 859 chemical species. The computational results agree very well with recent experimental results. Pressure traces, heat release rates, burn duration, combustion efficiency and emissions of hydrocarbon, oxygenated hydrocarbon, and carbon monoxide are generally well predicted for the whole range of equivalence ratios. The computational model also shows where the pollutants originate within the combustion chamber, thereby explaining the changes in the HC and CO emissions as a function of equivalence ratio.
Technical Paper

Plasma-Assisted Catalytic Reduction of NOx

1998-10-19
982508
Many studies suggest that lean-NOx SCR proceeds via oxidation of NO to NO2 by oxygen, followed by the reaction of the NO2 with hydrocarbons. On catalysts that are not very effective in catalyzing the equilibration of NO+O2 and NO2, the rate of N2 formation is substantially higher when the input NOx is NO2 instead of NO. The apparent bifunctional mechanism in the SCR of NOx has prompted the use of mechanically mixed catalyst components, in which one component is used to accelerate the oxidation of NO to NO2, and another component catalyzes the reaction between NO2 and the hydrocarbon. Catalysts that previously were regarded as inactive for NOx reduction could therefore become efficient when mixed with an oxidation catalyst. Preconverting NO to NO2 opens the opportunity for a wider range of SCR catalysts and perhaps improves the durability of these catalysts. This paper describes the use of a non-thermal plasma as an efficient means for selective partial oxidation of NO to NO2.
Technical Paper

Piston-Liner Crevice Geometry Effect on HCCI Combustion by Multi-Zone Analysis

2002-10-21
2002-01-2869
A multi-zone model has been developed that accurately predicts HCCI combustion and emissions. The multi-zone methodology is based on the observation that turbulence does not play a direct role on HCCI combustion. Instead, chemical kinetics dominates the process, with hotter zones reacting first, and then colder zones reacting in rapid succession. Here, the multi-zone model has been applied to analyze the effect of piston crevice geometry on HCCI combustion and emissions. Three different pistons of varying crevice size were analyzed. Crevice sizes were 0.26, 1.3 and 2.1 mm, while a constant compression ratio was maintained (17:1). The results show that the multi-zone model can predict pressure traces and heat release rates with good accuracy. Combustion efficiency is also predicted with good accuracy for all cases, with a maximum difference of 5% between experimental and numerical results.
Journal Article

Pathline Analysis of Full-cycle Four-stroke HCCI Engine Combustion Using CFD and Multi-Zone Modeling

2008-04-14
2008-01-0048
This paper investigates flow and combustion in a full-cycle simulation of a four-stroke, three-valve HCCI engine by visualizing the flow with pathlines. Pathlines trace massless particles in a transient flow field. In addition to visualization, pathlines are used here to trace the history, or evolution, of flow fields and species. In this study evolution is followed from the intake port through combustion. Pathline analysis follows packets of intake charge in time and space from induction through combustion. The local scalar fields traversed by the individual packets in terms of velocity magnitude, turbulence, species concentration and temperatures are extracted from the simulation results. The results show how the intake event establishes local chemical and thermal environments in-cylinder and how the species respond (chemically react) to the local field.
Technical Paper

Oxides of Nitrogen in the Combustion Products of an Ammonia Fueled Reciprocating Engine

1968-02-01
680401
A single cylinder investigation was conducted to determine concentration of oxides of nitrogen resulting from combustion of ammonia and air in a spark ignition engine over a range of fuel-air ratios typical of normal engine operation with ammonia. Nitric oxide concentrations exceeded that with hydrocarbons. Spectroscopic observations during the expansion process gave concentrations in some instances an order of magnitude greater than exhaust gas determinations. The results imply a different mechanism for nitric oxide formation with ammonia fuel than with hydrocarbons and that some equilibrating process may take place between combustion and exhaust to reduce otherwise even greater than measured exhaust gas concentrations.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

Isotopic Tracing of Fuel Carbon in the Emissions of a Compression-Ignition Engine Fueled with Biodiesel Blends

2003-06-23
2003-01-2282
Experimental tests were conducted on a Cummins B5.9 direct-injected diesel engine fueled with biodiesel blends. 20% and 50% blend levels were tested, as was 100% (neat) biodiesel. Emissions of particulate matter (PM), nitrogen oxides (NOx), hydrocarbons (HC) and CO were measured under steady-state operating conditions. The effect of biodiesel on total PM emissions was mixed; however, the contribution of the volatile organic fraction to total PM was greater for higher biodiesel blend levels. When only non-volatile PM mass was considered, reductions were observed for the biodiesel blends as well as for neat biodiesel. The biodiesel test fuels increased NOx, while HC and CO emissions were reduced. PM collected on quartz filters during the experimental runs were analyzed for carbon-14 content using accelerator mass spectrometry (AMS).
Technical Paper

HCCI Combustion: Analysis and Experiments

2001-05-14
2001-01-2077
Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work. On analysis, we have developed two powerful tools: a single zone model and a multi-zone model. The single zone model has proven very successful in predicting start of combustion and providing reasonable estimates for peak cylinder pressure, indicated efficiency and NOx emissions. This model is being applied to develop detailed engine performance maps and control strategies, and to analyze the problem of engine startability. The multi-zone model is capable of very accurate predictions of the combustion process, including HC and CO emissions.
Technical Paper

Gas Turbine Combustion of Ammonia

1967-02-01
670938
A theoretical and experimental study was undertaken to establish whether or not parametric correlations could be satisfactorily applied to combustion of ammonia in gas turbine combustors. It was found that a usual parameter of the form I (Re)0.7 was satisfactory for establishing blowout limits in modeling. However, the attainable values of chemical loading I were at least an order of magnitude less than those attainable with hydrocarbon fuels.
Technical Paper

Fundamental Limits on NOx Reduction by Plasma

1997-05-01
971715
This paper discusses the gas-phase reaction mechanisms for removal of NOx in a plasma. The effect of oxygen content on the competition between the reduction and oxidation processes is discussed. The effect of the electron kinetic energy distribution on the radical production and subsequent chemistry is then discussed in order to predict the best performance that can be achieved for NOx reduction using the plasma alone. The fundamental limit on the minimum electrical energy consumption that will be required to implement NOx reduction in any type of plasma reactor is established.
Technical Paper

Formation of a Plasma Puff

1987-02-01
870609
Formation of pulsed plasma jets, or puffs, was examined using several visualization techniques. Self-light streak photography was first employed to record salient global features of the development and structure of the jet. This provided information on the motion of the luminous gas particles in its core, revealing that plasma jets can have two distinct modes, being either totally subsonic or embodying a supersonic efflux manifested by the recorded streaks of Mach discs. At a fixed power pulse of electrical energy discharge in the plenum chamber, the outcome depends on the constriction imposed by an orifice at its outlet. Whereas the difference between the two types of jets was quite small, penetration in the subsonic case was found to be definitely larger than in supersonic.
Technical Paper

Feasibility of Plasma Aftertreatment for Simultaneous Control of NOx and Particulates

1999-10-25
1999-01-3637
Plasma reactors can be operated as a particulate trap or as a NOx converter. Particulate trapping in a plasma reactor can be accomplished by electrostatic precipitation. The soluble organic fraction of the trapped particulates can be utilized for the hydrocarbon-enhanced oxidation of NO to NO2. The NO2 can then be used to non-thermally oxidize the carbon fraction of the particulates. The oxidation of the carbon fraction by NO2 can lead to reduction of NOx or backconversion of NO2 to NO. This paper examines the hydrocarbon and electrical energy density requirements in a plasma for maximum NOx conversion in both heavy-duty and light-duty diesel engine exhaust. The energy density required for complete oxidation of hydrocarbons is also examined and shown to be much greater than that required for maximum NOx conversion. The reaction of NO2 with carbon is shown to lead mainly to backconversion of NO2 to NO.
Journal Article

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

2022-08-30
2022-01-1005
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO.
Technical Paper

Emissions from a Cummins B5.9 Diesel Engine Fueled with Oxygenate-in-Diesel Blends

2001-08-20
2001-01-2505
Engine fuel tests were conducted with an oxygenated fuel called Cetaner blended with conventional diesel fuel to determine its emissions reduction potential. Blends of 10, 20, 30 and 40% by volume were investigated. The test engine was a 1993 Cummins B5.9 diesel rated at 175 hp. Emissions of particulate matter (PM), oxides of nitrogen (NOx), hydrocarbons (HC) and carbon monoxide (CO), along with brake specific fuel consumption (bsfc) were measured during steady state operation at eight engine speed-load conditions. Soluble organic fraction (SOF) analysis was also carried out on the collected PM filter samples. The experimental results showed that the Cetaner blends can substantially reduce PM emissions. Reductions were observed in both the organic and inorganic fractions of the collected PM. On a modal-averaged basis, increasing Cetaner blend levels yielded greater PM reductions, with reductions of about 3-4% observed for each 1% of oxygen blended to the fuel by mass.
Technical Paper

Effect of Mixing on Hydrocarbon and Carbon Monoxide Emissions Prediction for Isooctane HCCI Engine Combustion Using a Multi-zone Detailed Kinetics Solver

2003-05-19
2003-01-1821
This research investigates how the handling of mixing and heat transfer in a multi-zone kinetic solver affects the prediction of carbon monoxide and hydrocarbon emissions for simulations of HCCI engine combustion. A detailed kinetics multi-zone model is now more closely coordinated with the KIVA3V computational fluid dynamics code for simulation of the compression and expansion processes. The fluid mechanics is solved with high spatial and temporal resolution (40,000 cells). The chemistry is simulated with high temporal resolution, but low spatial resolution (20 computational zones). This paper presents comparison of simulation results using this enhanced multi-zone model to experimental data from an isooctane HCCI engine.
X