Refine Your Search

Topic

Author

Search Results

Technical Paper

Zero-Venting, Regenerable, Lightweight Heat Rejection for EVA Suits

2005-07-11
2005-01-2974
Future space exploration missions will require a lightweight spacesuit that expends no consumables. This paper describes the design and performance of a prototype heat rejection system that weighs less than current systems and vents zero water. The system uses regenerable LiCl/water absorption cooling. Absorption cooling boosts the heat absorbed from the crew member to a high temperature for rejection to space from a compact, non-venting radiator. The system is regenerated by heating to 100°C for two hours. The system provides refrigeration at 17°C and rejects heat at temperatures greater than 50°C. The overall cooling capacity is over 100 W-hr/kg.
Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Ultralight Fabric Reflux Tube (UFRT) Thermal/Vacuum Test

1996-07-01
961455
Spacecraft thermal control systems are essential to provide the necessary thermal environment for the crew and to ensure that the equipment functions adequately on space missions. The Ultralight Fabric Reflux Tube (UFRT) was developed by the Pacific Northwest National Laboratory as a lightweight radiator concept to be used on planetary surface-type missions (e.g., Moon, Mars). The UFRT consists of a thin-walled tube (acting as the fluid boundary), overwrapped with a low-mass ceramic fabric (acting as the primary pressure boundary). The tubes are placed in an array in the vertical position with the evaporators at the lower end. Heat is added to the evaporators, which vaporizes the working fluid. The vapor travels to the condenser end section and condenses on the inner wall of the thin-walled tube. The resulting latent heat is radiated to the environment. The fluid condensed on the tube wall is then returned to the evaporator by gravity.
Technical Paper

The Advanced Life Support Human-Rated Test Facility: Testbed Development and Testing to Understand Evolution to Regenerative Life Support

1996-07-01
961592
As part of its integrated system test bed capability, NASA's Advanced Life Support Program has undertaken the development of a large-scale advanced life support facility capable of supporting long-duration testing of integrated, regenerative biological and physicochemical life support systems. This facility--the Advanced Life Support Human-Rated Test Facility (HRTF) is currently being built at the Johnson Space Center. The HRTF is comprised of a series of interconnected chambers with a sealed internal environment capable of supporting a test crew of four for periods exceeding one year. The life support system will consist of both biological and physicochemical components and will perform air revitalization, water recovery, food production, solid waste processing, thermal management, and integrated command and control functions. Currently, a portion of this multichamber facility has been constructed and is being outfitted with basic utilities and infrastructure.
Technical Paper

Testing of an Integrated Air Revitalization System

1995-07-01
951661
Long-duration missions in space will require regenerative air revitalization processes. Human testing of these regenerative processes is necessary to provide focus to the system development process and to provide realistic metabolic and hygiene inputs. To this end, the Lyndon B. Johnson Space Center (JSC), under the sponsorship of NASA Headquarters Office of Life and Microgravity Sciences and Applications, is implementing an Early Human Testing (EHT) Project. As part of this project, an integrated physicochemical Air Revitalization System (ARS) is being developed and tested in JSC's Life Support Systems Integration Facility (LSSIF). The components of the ARS include a Four-Bed Molecular Sieve (4BMS) Subsystem for carbon dioxide (CO2) removal, a Sabatier CO2 Reduction Subsystem (CRS), and a Solid Polymer Electrolyte (SPE)™ Oxygen Generation Subsystem (OGS). A Trace Contaminant Control Subsystem (TCCS) will be incorporated at a later date.
Technical Paper

Space Suit Radiator Performance in Lunar and Mars Environments

2007-07-09
2007-01-3275
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Last year we reported on the design and initial operational assessment tests of a novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X).
Technical Paper

Pulmonary Toxicity of Lunar Highland Dust

2009-07-12
2009-01-2379
Lunar dust exposures occurred during the Apollo missions while the crew was in the lunar module on the moon's surface and especially when micro-gravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes, and in some cases, respiratory symptoms were elicited. NASA's current vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust in the habitat need to be assessed. NASA is performing this assessment with a series of in vitro and in vivo tests with authentic lunar dust. Our approach is to “calibrate” the intrinsic toxicity of lunar dust by comparison to a relatively low toxicity dust (TiO2) and a highly toxic dust (quartz) using intrapharyngeal instillation of the dusts to mice. A battery of indices of toxicity is assessed at various time points after the instillations.
Technical Paper

Proof of Concept High Lift Heat Pump for a Lunar Base

1998-07-13
981683
When a permanent human outpost is established on the Moon, various methods may be used to reject the heat generated by the base. One proposed concept is the use of a heat pump operating with a vertical, flow-through thermal radiator mounted on a Space Station type habitation module [1]. Since the temperature of the lunar surface varies over the day, the vertical radiator sink temperatures can reach much higher levels than the comfort and even survivability requirements of a habitation module. A high temperature lift heat pump will not only maintain a comfortable habitation module temperature, but will also decrease the size of the radiators needed to reject the waste heat. Thus, the heat pump will also decrease the mass of the entire thermal system. Engineers at the Johnson Space Center (JSC) have tested a High Lift Heat Pump design and are developing the next generation heat pump based on information and experience gained from this testing.
Technical Paper

Progress on Development of the Advanced Life Support Human-Rated Test Facility

1995-07-01
951691
NASA's Advanced Life Support Program has included as part of its long-range planning the development of a large-scale advanced life support facility capable of supporting long-duration testing of integrated, regenerative biological and physicochemical life support systems. As the designated NASA Field Center responsible for integration and testing of advanced life support systems, Johnson Space Center has undertaken the development of such a facility--the Advanced Life Support Human-Rated Test Facility (HRTF). As conceived, the HRTF is an interconnected five-chamber facility with a sealed internal environment capable of supporting a test crew of four for periods exceeding one year. The life support system which sustains the crew consists of both biological and physicochemical components and will perform air revitalization, water recovery, food production, solid waste processing, thermal management, and integrated control and monitoring functions.
Technical Paper

Program Development for Exercise Countermeasures

1992-07-01
921140
Research indicates that adaptation to a microgravity environment includes physiological changes to the cardiovascular-respiratory, musculoskeletal, and neurosensory systems. Many of these alterations emerge even during space flights of short duration. Therefore, the advancement of manned space flight from Shuttle to Space Station Freedom (SSF) requires development of effective methods for augmenting the ability of humans to maintain functional performance. Thus, it is the goal of NASA to minimize the consequences of microgravity-induced deconditioning to provide optimal in-flight performance (intra- and extra-vehicular activities), suitable return to a pedestrian environment, and nominal physiological postflight recovery for an expeditious return-to-flight physical status.
Technical Paper

Pilot Investigation: Nominal Crew Induced Forces in Zero-G

1992-07-01
921155
Vibrational disturbance magnitude and frequency on space-flight missions is often a critical factor regarding mission success. Both materials processing experiments and astronomical investigations have specific microgravity environmental requirements. Recent efforts have been made to quantify the microgravity environment on the Space Shuttle Columbia by measuring gravity levels produced by specific mission events such as Orbiter engine burns, treadmill and ergometer activities, crew sleep periods, rotating chair operations, and body mass measurement operations. However, no measurements have been made of specific, nominal crewmember activities such as translating about the middeck, flight-deck, or in the Spacelab. This report presents pilot-study data of test subject forces induced by intravehicular activities such as push-offs and landings with both hands and feet. Five subjects participated in this investigation.
Technical Paper

Performance Testing of an Advanced Lightweight Freezable Radiator

2006-07-17
2006-01-2232
During extravehicular activities (EVAs) it is crucial to keep the astronaut comfortable. Currently, a sublimator rejects to space both the astronaut's metabolic heat and that produced by the Portable Life Support System. In doing so, it consumes up to 3.6 kg (8 lbm) of water; the single largest expendable during an eight-hour EVA. While acceptable for low earth orbit, resupply for moon and interplanetary missions will be too costly. Fortunately, the amount of water consumed can be greatly reduced if most of the heat load is radiated to space. However, the radiator must reject heat at the same rate that it is generated to prevent heat stroke or frostbite. Herein, we report on a freezable radiator and heat exchanger to proportionally control the heat rejection rate.
Technical Paper

Overview of NASA's Thermal Control System Development for Exploration Project

2009-07-12
2009-01-2436
NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems (LSS) project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several subelements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project.
Technical Paper

Orbiter Flash Evaporator: Flight Experience and Improvements

1997-07-01
972262
The Flash Evaporator Subsystem (FES) provides active cooling for the Shuttle Orbiter vehicle during the ascent and re-entry phases of the flight and provides supplemental cooling to the radiators while on-orbit. This paper describes the design and operation of the FES and summarizes the operational flight experience to date. As the fleet of orbiters grows older, contamination and corrosion are two issues on which attention has focused. A discussion of these conditions and the subsequent design changes and operational workarounds will be summarized.
Technical Paper

On-Orbit Performance of the Major Constituent Analyzer

2002-07-15
2002-01-2404
The Major Constituent Analyzer (MCA) was activated on-orbit on 2/13/01 and provided essentially continuous readings of partial pressures for oxygen, nitrogen, carbon dioxide, methane, hydrogen and water in the ISS atmosphere. The MCA plays a crucial role in the operation of the Laboratory ECLSS and EVA operations from the airlock. This paper discusses the performance of the MCA as compared to specified accuracy requirements. The MCA has an on-board self-calibration capability and the frequency of this calibration could be relaxed with the level of instrument stability observed on-orbit. This paper also discusses anomalies the MCA experienced during the first year of on-orbit operation. Extensive Built In Test (BIT) and fault isolation capabilities proved to be invaluable in isolating the causes of anomalies. The process of fault isolation is discussed along with development of workaround solutions and implementation of permanent on-orbit corrections.
Technical Paper

Modifications of Physiological Processes Concerning Extravehicular Activity in Microgravity

1994-06-01
941334
The incidence of DCS in null gravity appears to be considerably less than predicted by 1-g experiments. In NASA studies in 1-g, 83% of the incidents of DCS occur in the legs. We report first on a study with a crossover design that indicated a considerable reduction in the decompression Doppler bubble grade in the lower extremities in subjects in simulated microgravity (bed rest) as compared to themselves when ambulatory in unit gravity. Second we describe the results of a cardiovascular deconditioning study using a tail-suspended rat model. Since there may be a reduction in bubble production in 0-g, this would reduce the possibility of acquiring neurological DCS, especially by arterial gas embolism. Further, cardiovascular deconditioning appears to reduce the pulmonary artery hypertension (secondary to gas embolization) necessary to effect arterialization of bubbles.
Technical Paper

Lightweight, Flexible, and Freezable Heat Pump/Radiator for EVA Suits

2008-06-29
2008-01-2112
We have completed preliminary tests that show the feasibility of an innovative concept for a spacesuit thermal control system using a lightweight, flexible heat pump/radiator. The heat pump/radiator is part of a regenerable LiCI/water absorption cooling device that absorbs an astronaut's metabolic heat and rejects it to the environment via thermal radiation at a relatively high temperature. We identified key design specifications for the system, demonstrated that it is feasible to fabricate the flexible radiator, measured the heat rejection capability of the radiator, and assessed the effects on overall mass of the PLSS. We specified system design features that will enable the flexible absorber/radiator to operate in a wide range of space exploration environments. The materials used to fabricate the flexible absorber/radiator samples were all found to be low off-gassing and many have already been qualified for use in space.
Technical Paper

International Space Station Waste Collector Subsystem Risk Mitigation Experiment Design Improvements

2002-07-15
2002-01-2304
The International Space Station Waste Collector Subsystem Risk Mitigation Experiment (ISS WCS RME) was flown as the primary (Shuttle) WCS on Space Shuttle flight STS-104 (ISS-7A) in July 2001, to validate new design enhancements. In general, the WCS is utilized for collecting, storing, and compacting fecal & associated personal hygiene waste, in a zero gravity environment. In addition, the WCS collects and transfers urine to the Shuttle waste storage tank. All functions are executed while controlling odors and providing crew comfort. The ISS WCS previously flew on three Shuttle flights as the Extended Duration Orbiter (EDO) WCS, as it was originally designed to support extended duration Space Shuttle flights up to 30 days in length. Soon after its third flight, the Space Shuttle Program decided to no longer require 30 day extended mission duration capability and provided the EDO WCS to the ISS Program.
Technical Paper

Innovative Schematic Concept Analysis for a Space Suit Portable Life Support Subsystem

2006-07-17
2006-01-2201
Conceptual designs for a space suit Personal Life Support Subsystem (PLSS) were developed and assessed to determine if upgrading the system using new, emerging, or projected technologies to fulfill basic functions would result in mass, volume, or performance improvements. Technologies were identified to satisfy each of the functions of the PLSS in three environments (zero-g, Lunar, and Martian) and in three time frames (2006, 2010, and 2020). The viability of candidate technologies was evaluated using evaluation criteria such as safety, technology readiness, and reliability. System concepts (schematics) were developed for combinations of time frame and environment by assigning specific technologies to each of four key functions of the PLSS -- oxygen supply, waste removal, thermal control, and power. The PLSS concepts were evaluated using the ExtraVehicular Activity System Sizing Analysis Tool, software created by NASA to analyze integrated system mass, volume, power and thermal loads.
Technical Paper

Immobilized Microbe Microgravity Water Processing System (IMMWPS) Flight Experiment Integrated Ground Test Program

2002-07-15
2002-01-2355
This paper provides an overview of the IMMWPS Integrated Ground Test Program, completed at the NASA Johnson Space Center (JSC) during October and November 2001. The JSC Crew and Thermal Systems Division (CTSD) has developed the IMMWPS orbital flight experiment to test the feasibility of a microbe-based water purifier for use in zero-gravity conditions. The IMMWPS design utilizes a Microbial Processor Assembly (MPA) inoculated with facultative anaerobes to convert organic contaminants in wastewater to carbon dioxide and biomass. The primary purpose of the ground test program was to verify functional operations and procedures. A secondary objective was to provide initial ground data for later comparison to on-orbit performance. This paper provides a description of the overall test program, including the test article hardware and the test sequence performed to simulate the anticipated space flight test program. In addition, a summary of significant results from the testing is provided.
X