Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal Engineering of Mars Entry Carbon/Carbon Non-Ablative Aeroshell - Part 2

2000-07-10
2000-01-2404
Candidate Aeroshell Test models composed of a quasi-isotropic Carbon/Carbon(C/C) front face sheet (F/S), eggcrate core, C/C back F/S, Carbon Aerogel insulation, C/C radiation shield and the C/C close-out were constructed based on the analytical temperature predictions presented in Part One of this work[1]. The analytical results obtained for a simulated Mars entry of a 2.9 meter diameter cone shaped Carbon-Carbon Aeroshell demonstrated the feasibility of the design. These results showed that the maximum temperature the front F/S reached during the decent was 1752 °C with the resulting rear temperature reaching 326 °C in the thermal model. Part Two of this work documents the thermal modeling and correlation for the Mars Aeroshell test sample and fixture. A finite difference, SINDA/G, thermal math model of the test fixture and sample was generated and correlated to data from an arc jet test conducted at the NASA Ames Research Center's interactive heating facility.
Technical Paper

Thermal Design and Flight Experience of the Mars Exploration Rover Spacecraft Computer-Controlled, Propulsion Line Heaters

2004-07-19
2004-01-2412
As part of the Mars Exploration Rover (MER) project, the National Aeronautics and Space Administration (NASA) launched two rovers in June and July of 2003 and successfully landed both of them on Mars in January of 2004. The cruise stage of each spacecraft (S/C) housed most of the hardware needed to complete the cruise from Earth to Mars, including the propulsion system. Propulsion lines brought hydrazine propellant from tanks under the cruise stage to attitude-control thrusters located on the periphery of the cruise stage. Hydrazine will freeze in the propellant lines if it reaches temperatures below 1.7°C. Thermal control of the propulsion lines was a mission critical function of the thermal subsystem; a frozen propellant line could have resulted in loss of attitude control and complete loss of the S/C.
Journal Article

Thermal Design Trade Study for the Mars Science Laboratory ChemCam Body Unit

2009-07-12
2009-01-2462
The Mars Science Laboratory will be the next Martian mobility system that is scheduled to launch in the fall of 2011. The ChemCam Instrument is a part of the MSL science payload suite. It is innovative for planetary exploration in using a technique referred to as laser breakdown spectroscopy to determine the chemical composition of samples from distances of up to about 9 meters away. ChemCam is led by a team at the Los Alamos National Laboratory and the Centre d'Etude Spatiale des Rayonnements in Toulouse, France. The portion of ChemCam that is located inside the Rover, the ChemCam Body Unit contains the imaging charged-coupled device (CCD) detectors. Late in the design cycle, the ChemCam team explored alternate thermal design architectures to provide CCD operational overlap with the Rover's remote sensing instruments. This operational synergy is necessary to enable planning for subsequent laser firings and geological context.
Technical Paper

The Mars Thermal Environment and Radiator Characterization (MTERC) Experiment

2000-07-10
2000-01-2402
Radiators will be used on Mars to reject excess heat from various processes and surfaces and will help temper the climate of any future manned habitats. Radiator performance is a function of the radiator size (area), the emissivity, ε, of the radiator surface, the radiator temperature, local environmental conditions, and the effective sky temperature to which it radiates. The effective sky temperature of Mars is not known. Previous estimates have ranged between 80 K to 170 K. Also, it is not known how dust accumulation and other environmental effects act to change the performance of a radiator as a function of time. The MTERC Experiment is designed to gather data to address these unknowns. This paper will describe the operational theory and the configuration of the MTERC experiment hardware and will discuss results of MTERC performance testing.
Technical Paper

The Advanced Life Support Human-Rated Test Facility: Testbed Development and Testing to Understand Evolution to Regenerative Life Support

1996-07-01
961592
As part of its integrated system test bed capability, NASA's Advanced Life Support Program has undertaken the development of a large-scale advanced life support facility capable of supporting long-duration testing of integrated, regenerative biological and physicochemical life support systems. This facility--the Advanced Life Support Human-Rated Test Facility (HRTF) is currently being built at the Johnson Space Center. The HRTF is comprised of a series of interconnected chambers with a sealed internal environment capable of supporting a test crew of four for periods exceeding one year. The life support system will consist of both biological and physicochemical components and will perform air revitalization, water recovery, food production, solid waste processing, thermal management, and integrated command and control functions. Currently, a portion of this multichamber facility has been constructed and is being outfitted with basic utilities and infrastructure.
Technical Paper

Testing of an Integrated Air Revitalization System

1995-07-01
951661
Long-duration missions in space will require regenerative air revitalization processes. Human testing of these regenerative processes is necessary to provide focus to the system development process and to provide realistic metabolic and hygiene inputs. To this end, the Lyndon B. Johnson Space Center (JSC), under the sponsorship of NASA Headquarters Office of Life and Microgravity Sciences and Applications, is implementing an Early Human Testing (EHT) Project. As part of this project, an integrated physicochemical Air Revitalization System (ARS) is being developed and tested in JSC's Life Support Systems Integration Facility (LSSIF). The components of the ARS include a Four-Bed Molecular Sieve (4BMS) Subsystem for carbon dioxide (CO2) removal, a Sabatier CO2 Reduction Subsystem (CRS), and a Solid Polymer Electrolyte (SPE)™ Oxygen Generation Subsystem (OGS). A Trace Contaminant Control Subsystem (TCCS) will be incorporated at a later date.
Technical Paper

Space Suit Radiator Performance in Lunar and Mars Environments

2007-07-09
2007-01-3275
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Last year we reported on the design and initial operational assessment tests of a novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X).
Technical Paper

Sorbent Bed Acquisition and Compression of Carbon Dioxide from the Mars Atmosphere

2000-07-10
2000-01-2237
Human exploration of Mars as well as unmanned sample return missions from Mars can benefit greatly from the use of propellants produced from the resources available from the atmosphere of Mars. The first major step of any in-situ propellant production (ISPP) system is to acquire carbon dioxide (CO2) from the Mars atmosphere and compress it for further chemical processing. One system that performs this step is called a Mars Atmosphere Acquisition and Compression (MAAC) unit. A simple prototype MAAC was developed by JPL as part of the Mars ISPP Precursor (MIP) experiment package for inclusion on the Mars 2001 Surveyor Lander. The MAAC consists of a valved enclosure packed with a sorbent material which selectively adsorbs CO2 from the Mars atmosphere (valves open), desorbs and compresses the acquired CO2 by heating (valves closed) and then delivers the pressurized CO2 to an oxygen generating system where the CO2 is electrolyzed to produce oxygen.
Technical Paper

Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup - System Testing

2002-07-15
2002-01-2401
NASA Ames Research Center and Lawrence Berkeley National lab have completed a three-year joint NRA research project on the use of waste biomass to make a gaseous contaminant removal system. The objective of the research was to produce activated carbon from life support wastes and to use the activated carbon to adsorb and remove incineration flue gas contaminants such as NOx. Inedible biomass waste from food production was the primary waste considered for conversion to activated carbon. Previous research at NASA Ames has demonstrated the adsorption of both NOx and SO2 on activated carbon made from biomass and the subsequent conversion of adsorbed NOx to nitrogen and SO2 to sulfur. This paper presents the results testing the whole process system consisting of making, using, and regenerating activated carbon with relevant feed from an actual incinerator. Factors regarding carbon preparation, adsorption and regeneration are addressed.
Technical Paper

Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup

2000-07-10
2000-01-2283
This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NOx and SO2 contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NOx and SO2 in activated carbon made from biomass. Conversion of adsorbed NOx to nitrogen has also been observed.
Technical Paper

Progress on Development of the Advanced Life Support Human-Rated Test Facility

1995-07-01
951691
NASA's Advanced Life Support Program has included as part of its long-range planning the development of a large-scale advanced life support facility capable of supporting long-duration testing of integrated, regenerative biological and physicochemical life support systems. As the designated NASA Field Center responsible for integration and testing of advanced life support systems, Johnson Space Center has undertaken the development of such a facility--the Advanced Life Support Human-Rated Test Facility (HRTF). As conceived, the HRTF is an interconnected five-chamber facility with a sealed internal environment capable of supporting a test crew of four for periods exceeding one year. The life support system which sustains the crew consists of both biological and physicochemical components and will perform air revitalization, water recovery, food production, solid waste processing, thermal management, and integrated control and monitoring functions.
Technical Paper

Mars Exploration Rover Thermal Test Program Overview

2004-07-19
2004-01-2310
In January 2004, two Mars Exploration Rovers (MER) landed on the surface of Mars to begin their mission as robotic geologists. A year prior to these historic landings, both rovers and the spacecraft that delivered them to Mars, were completing a series of environmental tests in facilities at the Jet Propulsion Laboratory. This paper describes the test program undertaken to validate the thermal design and verify the workmanship integrity of both rovers and the spacecraft. The spacecraft, which contained the rover within the aeroshell, were tested in a 7.5 m diameter thermal vacuum chamber. Thermal balance was performed for the near earth (hot case) condition and for the near Mars (cold case) condition. A solar simulator was used to provide the solar boundary condition on the solar array. IR lamps were used to simulate the solar heat load on the aeroshell for the off-sun attitudes experienced by the spacecraft during its cruise to Mars.
Journal Article

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

2011-04-12
2011-01-1136
It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil-derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter.
Technical Paper

Immobilized Microbe Microgravity Water Processing System (IMMWPS) Flight Experiment Integrated Ground Test Program

2002-07-15
2002-01-2355
This paper provides an overview of the IMMWPS Integrated Ground Test Program, completed at the NASA Johnson Space Center (JSC) during October and November 2001. The JSC Crew and Thermal Systems Division (CTSD) has developed the IMMWPS orbital flight experiment to test the feasibility of a microbe-based water purifier for use in zero-gravity conditions. The IMMWPS design utilizes a Microbial Processor Assembly (MPA) inoculated with facultative anaerobes to convert organic contaminants in wastewater to carbon dioxide and biomass. The primary purpose of the ground test program was to verify functional operations and procedures. A secondary objective was to provide initial ground data for later comparison to on-orbit performance. This paper provides a description of the overall test program, including the test article hardware and the test sequence performed to simulate the anticipated space flight test program. In addition, a summary of significant results from the testing is provided.
Journal Article

Ground Validation of the Third Generation JPL Electronic Nose

2008-06-29
2008-01-2044
The Third Generation ENose is an air quality monitor designed to operate in the environment of the US Lab on the International Space Station. It detects a selected group of analytes at target concentrations in the ppm regime at an environmental temperature range of 18 - 30 °C, relative humidity from 25 - 75% and pressure from 530 to 760 torr. The abilities of the device to detect ten analytes, to reject confounders as “unknown” and to deconvolute mixtures of two analytes under varying environmental conditions has been tested extensively in the laboratory. Results of ground testing showed an overall success rate for detection, identification and quantification of analytes of 87% under nominal temperature and humidity conditions and 83% over all conditions.
Technical Paper

Early Results of an Integrated Water Recovery System Test

2001-07-09
2001-01-2210
The work presented in this paper summarizes the early results of an integrated advanced water recovery system test conducted by the Crew and Thermal Systems Division (CTSD) at NASA-Johnson Space Center (JSC). The system design and the results of the first two months of operation are presented. The overall objective of this test is to demonstrate the capability of an integrated advanced water recovery system to produce potable quality water for at least six months. Each subsystem is designed for operation in microgravity. The primary treatment system consists of a biological system for organic carbon and ammonia removal. Dissolved solids are removed by reverse osmosis and air evaporation systems. Finally, ion exchange technology in combination with photolysis or photocatalysis is used for polishing of the effluent water stream. The wastewater stream consists of urine and urine flush water, hygiene wastewater and a simulated humidity condensate.
Technical Paper

Dish/Stirling Hybrid-Receiver Sub-Scale Tests and Full-Scale Design

1999-08-02
1999-01-2561
We have designed and tested a prototype dish/Stirling hybrid-receiver combustion system. The system consists of a pre-mixed natural-gas burner heating a pin-finned sodium heat pipe. The design emphasizes simplicity, low cost, and ruggedness. Our test was on a 1/6th-scale device, with a nominal firing rate of 18kWt, a power throughput of 13kWt, and a sodium vapor temperature of 750°C. The air/fuel mixture was electrically preheated to 640°C to simulate recuperation. The test rig was instrumented for temperatures, pressures, flow rates, overall leak rate, and exhaust emissions. The data verify our burner and heat-transfer models. Performance and post-test examinations validate our choice of materials and fabrication methods. Based on the 1/6th -scale results, we are designing a full-scale hybrid receiver.
Technical Paper

Development of the Advanced Life Support Systems Integration Research Facility at NASA's Johnson Space Center

1992-07-01
921317
Future NASA manned missions to the moon and Mars will require development of robust regenerative life support system technologies which offer high reliability and minimal resupply. To support the development of such systems, early ground-based test facilities will be required to demonstrate integrated, long-duration performance of candidate regenerative air revitalization, water recovery, and thermal management systems. The advanced life support Systems Integration Research Facility (SIRF) is one such test facility currently being developed at NASA's Johnson Space Center (JSC). The SIRF, when completed, will accommodate unmanned and subsequently manned integrated testing of advanced regenerative life support technologies at ambient and reduced atmospheric pressures.
Technical Paper

Development of a Test Facility for Air Revitalization Technology Evaluation

2007-07-09
2007-01-3161
Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center (JSC) serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat by up to eight persons. A variety of gas analyzers and dew point sensors are used to monitor the chamber atmosphere and the process flow upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space.
X