Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Φ-Sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property

2019-04-02
2019-01-0961
Φ-sensitivity is a fuel characteristic that has important benefits for the operation and control of low-temperature gasoline combustion (LTGC) engines. A fuel is φ-sensitive if its autoignition reactivity varies with the fuel/air equivalence ratio (φ). Thus, multiple-injection strategies can be used to create a φ-distribution that leads to several benefits. First, the φ-distribution causes a sequential autoignition that reduces the maximum heat release rate. This allows higher loads without knock and/or advanced combustion timing for higher efficiencies. Second, combustion phasing can be controlled by adjusting the fuel-injection strategy. Finally, experiments show that intermediate-temperature heat release (ITHR) increases with φ-sensitivity, increasing the allowable combustion retard and improving stability. A detailed mechanism was applied using CHEMKIN to understand the chemistry responsible for φ-sensitivity.
Technical Paper

Two-Stroke Engine Cleanliness via a Fuel Additive

2016-11-08
2016-32-0048
Two-stroke engine keep-clean data is presented to demonstrate the deposit removal capabilities of a premium fuel additive. In this testing, the fuel additive was added as a top-treatment to a 50:1 blended fuel-oil mixture. Engine testing was conducted on an EchoTM SRM-265 (25.4 cc) string trimmer run under a standardized test cycle. Test measurements included piston deposits, ring deposits, and exhaust port blockage. In addition, a more complete data set was analyzed and several variables were investigated including: different base gasoline fuels, ethanol level (E0 and E10), additive dose (none, low, and high), and fuel stabilizer dose (none and high). Post-test inspection of engine parts using fuel additives showed a high level of clean surfaces, which maintained the engine at its original performance.
Technical Paper

Mixture Stratification for CA50 Control of LTGC Engines with Reactivity-Enhanced and Non-Additized Gasoline

2021-04-06
2021-01-0513
Low-temperature gasoline combustion engines can provide high efficiencies with very low NOx and particulate emissions, but rapid control of the combustion timing (50% burn point, CA50) remains a challenge. Partial Fuel Stratification (PFS) was recently demonstrated [2019-01-1156] to control CA50 over a wide range at some selected operating conditions using a regular-grade E10 gasoline. PFS was produced by a double direct injection (D-DI) strategy using a gasoline-type direct injector. For this D-DI-PFS strategy, the majority of the fuel is injected early in the intake stroke, establishing the minimum equivalence ratio in the charge, while the remainder of the fuel is supplied by a second injection at a variable time (SOI2) during the compression stroke to vary the amount of stratification. Adjusting the stratification changes the combustion timing, and this can be done on a cycle-to-cycle basis by adjusting SOI2.
Journal Article

Improving Efficiency and Using E10 for Higher Loads in Boosted HCCI Engines

2012-04-16
2012-01-1107
This study systematically investigates the effects of various engine operating parameters on the thermal efficiency of a boosted HCCI engine, and the potential of E10 to extend the high-load limit beyond that obtained with conventional gasoline. Understanding how these parameters can be adjusted and the trade-offs involved is critical for optimizing engine operation and for determining the highest efficiencies for a given engine geometry. Data were acquired in a 0.98 liter, single-cylinder HCCI research engine with a compression-ratio of 14:1, and the engine facility was configured to allow precise control over the relevant operating parameters. The study focuses on boosted operation with intake pressures (Pin) ≥ 2 bar, but some data for Pin < 2 bar are also presented. Two fuels are considered: 1) an 87-octane gasoline, and 2) E10 (10% ethanol in this same gasoline) which has a lower autoignition reactivity for boosted operation.
Journal Article

Experimental Evaluation of a Custom Gasoline-Like Blend Designed to Simultaneously Improve ϕ-Sensitivity, RON and Octane Sensitivity

2020-04-14
2020-01-1136
ϕ-sensitivity is a fuel characteristic that has important benefits for the operation and control of low-temperature gasoline combustion (LTGC) engines. However, regular gasoline is not very ϕ-sensitive at low-pressure conditions, meaning that intake boosting (typically Pin ≥ 1.3 bar) is required to take advantage of this property. Thus, there is strong motivation to design a gasoline-like fuel that simultaneously improves ϕ-sensitivity, RON and octane sensitivity, to make an improved fuel suitable for both LTGC and modern SI engines. In a previous study [SAE 2019-01-0961], a 5-component regulation-compliant fuel blend (CB#1) was computationally designed; and simulations showed promising results when it was compared to a regular E10 gasoline (RD5-87). The current study experimentally evaluates CB#1 in the Sandia LTGC engine and compares the results with those of RD5-87. The RON and octane sensitivity were improved 1.3 and 3.6 units by CB#1, respectively.
Journal Article

Effects of Gasoline Reactivity and Ethanol Content on Boosted, Premixed and Partially Stratified Low-Temperature Gasoline Combustion (LTGC)

2015-04-14
2015-01-0813
Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel ϕ- sensitive so that partial fuel stratification (PFS) can be applied for higher loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion.
Technical Paper

Effects of Ethanol Blending on the Reactivity and Laminar Flame Speeds of Gasoline, Methanol-to-Gasoline, and Ethanol-to-Gasoline Surrogates

2024-04-09
2024-01-2817
Ethanol blending is one method that can be used to reduce knock in spark ignition engines by decreasing the autoignition reactivity of the fuel and modifying its laminar flame speed. In this paper, the effects of ethanol blending on knock propensity and flame speed of petroleum and low-carbon gasoline fuels is analyzed. To do so, surrogate fuels were formulated for methanol-to-gasoline (MTG) and ethanol-to-gasoline (ETG) based on the fuels’ composition, octane number, and select physical properties; and 0-D and 1-D chemical kinetics simulations were performed to investigate reactivity and laminar flame speed, respectively. Results of MTG and ETG were compared against those of PACE-20, a well-characterized surrogate for regular E10 gasoline. Similarly to PACE-20, blending MTG and ETG with ethanol increases the fuel’s research octane number (RON) and sensitivity.
Technical Paper

Effect of Cyclo-Pentane Impurities on the Autoignition Reactivity and Properties of a Gasoline Surrogate Fuel

2024-02-16
2024-01-5021
Surrogate fuels that reproduce the characteristics of full-boiling range fuels are key tools to enable numerical simulations of fuel-related processes and ensure reproducibility of experiments by eliminating batch-to-batch variability. Within the PACE initiative, a surrogate fuel for regular-grade E10 (10%vol ethanol) gasoline representative of a U.S. market gasoline, termed PACE-20, was developed and adopted as baseline fuel for the consortium. Although extensive testing demonstrated that PACE-20 replicates the properties and combustion behavior of the full-boiling range gasoline, several concerns arose regarding the purity level required for the species that compose PACE-20. This is particularly important for cyclo-pentane, since commercial-grade cyclo-pentane typically shows 60%–85% purity. In the present work, the effects of the purity level of cyclo-pentane on the properties and combustion characteristics of PACE-20 were studied.
Journal Article

Development and Validation of an EHN Mechanism for Fundamental and Applied Chemistry Studies

2022-03-29
2022-01-0455
Autoignition enhancing additives have been used for years to enhance the ignition quality of diesel fuel, with 2-ethylhexyl nitrate (EHN) being the most common additive. EHN also enhances the autoignition reactivity of gasoline, which has advantages for some low-temperature combustion techniques, such as Sandia’s Low-Temperature Gasoline Combustion (LTGC) with Additive-Mixing Fuel Injection (AMFI). LTGC-AMFI is a new high-efficiency and low-emissions engine combustion process based on supplying a small, variable amount of EHN into the fuel for better engine operation and control. However, the mechanism by which EHN interacts with the fuel remains unclear. In this work, a chemical-kinetic mechanism for EHN was developed and implemented in a detailed mechanism for gasoline fuels. The combined mechanism was validated against shock-tube experiments with EHN-doped n-heptane and HCCI engine data for EHN-doped regular E10 gasoline. Simulations showed a very good match with experiments.
Technical Paper

Combustion-Timing Control of Low-Temperature Gasoline Combustion (LTGC) Engines by Using Double Direct-Injections to Control Kinetic Rates

2019-04-02
2019-01-1156
Low-temperature gasoline combustion (LTGC) engines can provide high efficiencies and extremely low NOx and particulate emissions, but controlling the combustion timing remains a challenge. This paper explores the potential of Partial Fuel Stratification (PFS) to provide fast control of CA50 in an LTGC engine. Two different compression ratios are used (CR=16:1 and 14:1) that provide high efficiencies and are compatible with mixed-mode SI-LTGC engines. The fuel used is a research grade E10 gasoline (RON 92, MON 85) representative of a regular-grade market gasoline found in the United States. The fuel was supplied with a gasoline-type direct injector (GDI) mounted centrally in the cylinder. To create the PFS, the GDI injector was pulsed twice each engine cycle. First, an injection early in the intake stroke delivered the majority of the fuel (70 - 80%), establishing the minimum equivalence ratio in the charge.
Journal Article

Boosted Premixed-LTGC / HCCI Combustion of EHN-doped Gasoline for Engine Speeds Up to 2400 rpm

2016-10-17
2016-01-2295
Previous work has shown that conventional diesel ignition improvers, 2-ethylhexyl nitrate (EHN) and di-tert-butyl peroxide (DTBP), can be used to enhance the autoignition of a regular-grade E10 gasoline in a well premixed low-temperature gasoline combustion (LTGC) engine, hereafter termed an HCCI engine, at naturally aspirated and moderately boosted conditions (up to 180 kPa absolute) with a constant engine speed of 1200 rpm and a 14:1 compression ratio. In the current work the effect of EHN on boosted HCCI combustion is further investigated with a higher compression ratio (16:1) piston and over a range of engine speeds (up to 2400 rpm). The results show that the higher compression ratio and engine speeds can make the combustion of a regular-grade E10 gasoline somewhat less stable. The addition of EHN improves the combustion stability by allowing combustion phasing to be more advanced for the same ringing intensity.
Technical Paper

A Comprehensive Examination of the Effect of Ethanol-Blended Gasoline on Intake Valve Deposits in Spark-Ignited Engines

2007-10-29
2007-01-3995
Ethanol-gasoline blends are widely understood to present certain technical challenges to engine operation. Despite widespread use of fuels ranging from E5 (5% ethanol in gasoline) in some European countries to E10 (10% ethanol) in the United States to E100 (100% ethanol; “alcool”) in Brazil, there are certain subjects which have only anecdotally been examined. This paper examines two such issues: the effect of ethanol on intake valve deposits (IVD) and the impact of fuel additive on filter plugging (a measure of solubility). The effect of ethanol on IVD is studied along two lines of investigation: the effect of E10 in a multi-fuel data set carried out in the BMW 318i used for EPA and CARB certification, and the effect of varying ethanol content from 0% to 85% in gasoline carried out in a modern flex-fuel vehicle.
X