Refine Your Search

Topic

Author

Search Results

Technical Paper

Vibro-Acoustic Behavior of Bead-Stiffened Flat Panels: FEA, SEA, and Experimental Analysis

1999-05-17
1999-01-1698
Vibration and sound radiation characteristics of bead-stiffened panels are investigated. Rectangular panels with different bead configurations are considered. The attention is focused on various design parameters, such as orientation, depth, and periodicity, and their effects on equivalent bending stiffness, modal density, radiation efficiency and sound transmission. A combined FEA-SEA approach is used to determine the response characteristics of panels across a broad frequency range. The details of the beads are represented in fine-meshed FEA models. Based on predicted surface velocities, Rayleigh integral is evaluated numerically to calculate the sound pressure, sound power and then the radiation efficiency of beaded panels. Analytical results are confirmed by comparing them with experimental measurements. In the experiments, the modal densities of the panels are inferred from averaged mechanical conductance.
Technical Paper

Truck Frame Motion Prediction and Correlation

2006-04-03
2006-01-1257
Accurate motion prediction can be used to evaluate vibrations at seat track and steering wheel. This paper presents the prediction and correlation of truck frame motion from wheel force transducer (WFT) measurements. It is assumed that the method can be used to predict vibrations at seat track and steering wheel for unibody vehicles. Two durability events were used for calculation. WFT measurements were used as inputs applied on frame from suspension. Frame loads were then used as inputs to calculate frame motions using a FEA approach. The predicted frame motions are represented by four exhaust hangers and they are compared with measured motions of the same locations. The correlations include displacement, velocity, and acceleration. It is shown that good correlations are obtained in velocity and displacement. Acceleration shows bigger differences than velocity and displacement.
Technical Paper

Theoretical and Practical Aspects of Balancing a V-8 Engine Crankshaft

2005-05-16
2005-01-2454
Crankshafts must be balanced statically and dynamically before being put into service. However, without pistons and connecting-rod assemblies, a non-symmetric crankshaft is not in dynamic balance. Therefore, it is necessary to apply equivalent ring-weights on each of the crankpins of the crankshaft when balancing it on a dynamic balancing machine. The value of the ring weight must be accurately determined, otherwise all advantages that are derived from balancing would be of no avail. This paper analytically examines the theoretical background of this problem. Formulas for calculating the ring weights are derived and presented. These formulas are applicable to a generic class of crankshafts of V-type engines with piston pin offset. Also, practical consideration, such as the design and manufacturing of these ring weights, the method of testing, and correction is addressed.
Technical Paper

Testing Elastomers - Can Correlation Be Achieved Between Machines, Load Cells, Fixtures and Operators?

2001-04-30
2001-01-1443
At present, testing elastomeric parts is performed at a level dictated by the users of the testing equipment. No society or testing group has defined a formal standard of testing or a way to calibrate a testing machine. This is in part due to the difficulty involved with testing a material whose properties are in a constant state of flux. To further complicate this issue, testing equipment, testing procedures, fixtures, and a host of other variables including the operators themselves, all can have an impact on the characterization of elastomers. The work presented in this paper looks at identifying some of the variables of testing between machines, load cells, fixtures and operators. It also shows that correlation can be achieved and should be performed between companies to ensure data integrity.
Technical Paper

Test Methodology to Reduce Axle Whine in a 4WD Vehicle

2005-05-16
2005-01-2403
With the ever increasing popularity of SUV automobiles, studies involving driveline specific problems have grown. One prevalent NVH problem is axle whine associated with the assembled motion transmission error (MTE) of an axle system and the corresponding vibration/acoustic transfer paths into the vehicle. This phenomenon can result in objectionable noise levels in the passenger compartment, ensuing in customer complaints. This work explores the methodology and test methods used to diagnose and solve a field axle whine problem, including the use of cab mount motion transmissibility path analysis, running modes and a detailed MTE best-of-the-best (BOB)/worst-of-the-worst (WOW) study. The in-vehicle axle whine baseline measurements including both vehicle dynamometer and on-road test conditions, along with the countermeasures of axle whine fixes are identified and presented in this paper.
Technical Paper

Techniques to Improve Springback Prediction Accuracy Using Dynamic Explicit FEA Codes

2002-03-04
2002-01-0159
Finite Element Analysis (FEA) has been successfully used in the simulation of sheet metal forming process. The accurate prediction of the springback is still a major challenge due to its sensitivity to the geometric modeling of the tools, strain hardening model, yield criterion, contact algorithm, loading pattern, element formulation, mesh size and number of through-thickness integration points, etc. The objective of this paper is to discuss the effect of numerical parameters on springback prediction using dynamic explicit FEA codes. The example used in the study is from the Auto/Steel Partnership High Strength Steel Rail Springback Project. The modeling techniques are discussed and the guidelines are provided for choosing numerical parameters, which influence the accuracy of the springback prediction and the computation cost.
Technical Paper

Supporting the Transportation Industry: Creating the GC-LB and High-Performance Multiuse (HPM) Grease Certification Programs

2023-10-31
2023-01-1652
This paper outlines the history and background of the NLGI (formerly known as the National Lubricating Grease Institute) lubricating grease specifications, GC-LB classification of Automotive Service Greases as well as details on the development of new requirements for their High-Performance Multiuse (HPM) grease certification program. The performance of commercial lubricating grease formulations through NLGI's Certification Mark using the GC-LB Classification system and the recently introduced HPM grease certification program will be discussed. These certification programs have provided an internationally recognized specification for lubricating grease and automotive manufacturers, users and consumers since 1989. Although originally conceived as a specification for greases for the re-lubrication of automotive chassis and wheel bearings, GC-LB is today recognized as a mark of quality for a variety of different applications.
Technical Paper

Strength Prediction and Correlation of Tow Hook Systems using Finite Element Analyses

2007-04-16
2007-01-1206
In this paper, tow hook systems and their functional objectives are briefly introduced. General analysis considerations in strength prediction of a tow hook system are described. These considerations contain nonlinear, clamping and material property simulations. Connections and loading simulation of a tow hook system model are discussed in details. A correlation example of a tow hook system is illustrated. This study shows that detailed modeling of a tow hook system is a fundamental requirement for accurate strength prediction and good correlation between finite element analysis and testing.
Technical Paper

Step-Stress Accelerated Test Method – A Validation Study

2003-03-03
2003-01-0470
Most products are designed to operate for a long period of time, and in such case, life testing is a relatively lengthy procedure. Lengthy tests tend to be expensive and the results become available too late to be of much use. To reduce the experimental cost significantly and provide an efficient tool to assess the life distribution for highly reliable product, a step-stress accelerated test (SSAT) was developed. An example of a rear suspension aft lateral link is used to validate the SSAT method.
Technical Paper

Stamping Effect on Oil Canning and Dent Resistance Performances of an Automotive Roof Panel

2007-04-16
2007-01-1696
The objective of this paper is to investigate the effect of stamping process on oil canning and dent resistance performances of an automotive roof panel. Finite element analysis of stamping processes was carried out using LS-Dyna to obtain thickness and plastic strain distributions under various forming conditions. The forming results were mapped onto the roof model by an in-house developed mapping code. A displacement control approach using an implicit FEM code ABAQUS/Standard was employed for oil canning and denting analysis. An Auto/Steel Partnership Standardized Test Procedure for Dent Resistance was employed to establish the analysis model and to determine the dent and oil canning loads. The results indicate that stamping has a positive effect on dent resistance and a negative effect on oil canning performance. As forming strains increase, dent resistance increases while the oil canning load decreases.
Technical Paper

Springback Study on a Stamped Fender Outer

2003-03-03
2003-01-0685
Springback study on a Dodge Ram fender outer panel is detailed in this paper. A simple measurement fixture is designed for the panel, wherein non-contact laser scan technology is applied The measurement data are compared with the original CAD design surface and deviation contour maps are obtained. Consistency of measurement is studied at different sections among three samples. Details of FEA simulations are outlined. The comparison between measurement and simulation prediction is summarized. A method to describe the consistency of measurement and the accuracy of simulation prediction is proposed. The targets for measurement consistency and simulation accuracy are verified. A sensitivity analysis is also performed to investigate various simulation input parameters.
Technical Paper

Simultaneous Topology and Performance Redesign by Large Admissible Perturbations for Automotive Structural Design

2001-03-05
2001-01-1058
A methodology for topology and performance redesign of complex structures by LargE Admissible Perturbations (LEAP) has been developed since 1983 in the Department of Naval Architecture and Marine Engineering, the University of Michigan. LEAP theory has successfully solved various redesign problems for performance and simultaneous topological and performance changes. The redesign problem is defined as a two-state problem that consists of two structural states, States S1 and S2. State S1 has undesirable characteristics or performance which does not satisfy designer specifications. The unknown State S2 has the desired structural response and/or performance. The relation between State S1 and State S2 is highly nonlinear with respect to its response or topology. So far, LEAP algorithms have solved various redesign problems for large structural changes (on the order of 100%–500%) of State S1 with only one finite element analysis.
Technical Paper

Representation of Constrained/Unconstrained Layer Damping Treatments in FEA/SEA Vehicle System Models: A Simplified Approach

1999-05-17
1999-01-1680
In this study, a simplified approach to modeling the dynamics of damping treatments in FEA (Finite Element)/ SEA (Statistical Energy) models is presented. The basic idea is to represent multi-layered composite structures with an equivalent layer. The properties of the equivalent layer are obtained by using the RKU (Ross, Kerwin and Ungar) method. The procedure presented here does not require any special pre-processing of the finite element input file and it does not increase the number of active degrees of freedom in the model, thereby making it possible to include the effect of these treatments in large system/subsystem level models. The equivalent properties obtained from RKU analysis can also be used in the SEA system models. In this study, both unconstrained and constrained layer damping treatments applied to simple structures (e.g., flat panels) as well as production vehicle components are examined.
Technical Paper

Perforated Damping Treatment; A Novel Approach to Reduction of Weight

1999-05-17
1999-01-1679
In noise and vibration control, damping treatments are applied on panel surfaces to dissipate the energy of flexural vibrations. Presence of damping treatment on the surface of a panel also plays an important role in the resulting vibro-acoustic characteristics of the composite system. The focus of this study is to explore possibilities of reducing the weight of damping treatments by means of perforation without sacrificing performance. The power injection concept from Statistical Energy Analysis (SEA) is used in conjunction with Finite Element Analysis (FEA) to predict the effect of perforated unconstrained layer treatments on flat rectangular panels. Normalized radiated sound power of the treated panels are calculated to assess the effect of varying percentage of perforation on structural-acoustic coupling.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Optimization of Damping Treatment for Structure Borne Noise Reduction

2003-05-05
2003-01-1592
In automotive industry, all passenger vehicles are treated with damping materials to reduce structure borne noise. The effectiveness of damping treatments depends upon design parameters such as choice of damping materials, locations and size of the treatment. This paper proposes a CAE (Computer Aided Engineering) methodology based on finite element analysis to optimize damping treatments. The developed method uses modal strain-energy information of bare structural panels to identify flexible regions, which in turn facilitates optimization of damping treatments with respect to location and size. The efficacy of the method is demonstrated by optimizing damping treatment for a full-size pick-up truck. Moreover, simulated road noise performances of the truck with and without damping treatments are compared, which show the benefits of applying damping treatment.
Technical Paper

Opportunity for Diesel Emission Reductions Using Advanced Catalysts and Water Blend Fuel

2000-03-06
2000-01-0182
This paper features the results of emission tests conducted on diesel oxidation catalysts, and the combination of diesel oxidation catalysts and water blend fuel (diesel fuel continuous emulsion). Vehicle chassis emission tests were conducted using an urban bus. The paper reviews the impact and potential benefits of combining catalyst and water blend diesel fuel technologies to reduce exhaust emissions from diesel engines.
Technical Paper

Nondestructive Estimation of Degradation in Vehicle Joints Due to High Mileage

1997-04-08
971514
An experimental method for nondestructive estimation of damage in joints due to high mileage degradation in cars is presented. The method estimates damage by comparing transfer functions of the same car at zero and at high mileage. The potential of the method is demonstrated analytically using a three dimensional concept Finite Element Model (FEM) of a car body to simulate the transfer functions of this car body at zero and at high mileage. The results demonstrate that the method is effective for identifying the damaged joints as well as the relative degree of degradation.
Technical Paper

Next Generation Torque Control Fluid Technology, Part III: Using an Improved Break-Away Friction Screen Test to Investigate Fundamental Friction Material-Lubricant Interactions

2010-10-25
2010-01-2231
Wet clutch friction devices are the primary means by which torque is transmitted in many of today's modern vehicle drivelines. These devices are used in automatic transmissions, torque vectoring devices, active on-demand vehicle stability systems, and torque biasing differentials. As discussed in a previous SAE paper ( 2006-01-3270 - Next Generation Torque Control Fluid Technology, Part I: Break-Away Friction Slip Screen Test Development), a testing tool was developed to simulate a limited slip differential break-away event using a Full Scale-Low Velocity Friction Apparatus (FS-LVFA). The purpose of this test was to investigate the fundamental interactions between lubricants and friction materials. The original break-away friction screen test, which used actual vehicle clutch plates and a single friction surface, proved a useful tool in screening new friction modifier technology.
Technical Paper

Modeling of Strain Rate Effects in Automotive Impact

2003-03-03
2003-01-1383
This paper deals with the effects of various approaches for modeling of strain rate effects for mild and high strength steels (HSS) on impact simulations. The material modeling is discussed in the context of the finite element method (FEM) modeling of progressive crush of energy absorbing automotive components. The characteristics of piecewise linear plasticity strain rate dependent material model are analyzed and various submodels for modeling of impact response of steel structures are investigated. The paper reports on the ranges of strains and strain rates that are calculated in typical FEM models for tube crush and their dependence on the material modeling approaches employed. The models are compared to the experimental results from drop tower tests.
X