Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

ɸ-Sensitivity Evaluation of n-Butanol and Iso-Butanol Blends with Surrogate Gasoline

2023-08-28
2023-24-0089
Using renewable fuels is a reliable approach for decarbonization of combustion engines. iso-Butanol and n-butanol are known as longer chain alcohols and have the potential of being used as gasoline substitute or a renewable fraction of gasoline. The combustion behavior of renewable fuels in modern combustion engines and advanced combustion concepts is not well understood yet. Low-temperature combustion (LTC) is a concept that is a basis for some of the low emissions-high efficiency combustion technologies. Fuel ɸ-sensitivity is known as a key factor to be considered for tailoring fuels for these engines. The Lund ɸ-sensitivity method is an empirical test method for evaluation of the ɸ-sensitivity of liquid fuels and evaluate fuel behavior in thermal. iso-Butanol and n-butanol are two alcohols which like other alcohol exhibit nonlinear behavior when blended with (surrogate) gasoline in terms of RON and MON.
Technical Paper

Unburned Hydro Carbon (HC) Estimation Using a Self-Tuned Heat Release Method

2010-10-25
2010-01-2128
An estimation model which uses the gross heat release data and the fuel energy to estimate the total amount of emissions and unburned Hydro Carbon (HC) is developed. Gross heat release data is calculated from a self-tuned heat release method which uses in-cylinder pressure data for computing the energy released during combustion. The method takes all heat and mass losses into account. The method estimates the polytropic exponent and pressure offset during compression and expansion using a nonlinear least square method. Linear interpolation of polytropic exponent and pressure offset is then performed during combustion to calculate the gross heat release during combustion. Moreover the relations between the emissions specifically HC and Carbon Monoxide (CO) are investigated. The model was validated with experimental data and promising results were achieved.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Technical Paper

Transition from HCCI to PPC: the Sensitivity of Combustion Phasing to the Intake Temperature and the Injection Timing with and without EGR

2016-04-05
2016-01-0767
An experiment was conducted to investigate the effect of charge stratification on the combustion phasing in a single cylinder, heavy duty (HD) compression ignition (CI) engine. To do this the start of injection (SOI) was changed from -180° after top dead centre (ATDC) to near top dead centre (TDC) during which CA50 (the crank angle at which 50% of the fuel energy is released) was kept constant by changing the intake temperature. At each SOI, the response of CA50 to a slight increase or decrease of either intake temperature or SOI were also investigated. Afterwards, the experiment was repeated with a different intake oxygen concentration. The results show that, for the whole SOI period, the required intake temperature to keep constant CA50 has a “spoon” shape with the handle on the -180° side.
Technical Paper

Transition from HCCI to PPC: Investigation of the Effect of Different Injection Timing on Ignition and Combustion Characteristics in an Optical PPC Engine

2020-04-14
2020-01-0559
The partially premixed combustion (PPC) concept is regarded as an intermediate process between the thoroughly mixed Homogeneous charge compression ignition (HCCI) combustion and compression ignition (CI) combustion. It’s a combination of auto-ignition mode, a fuel-rich premixed combustion mode, and a diffusion combustion mode. The concept has both high efficiency and low soot emission due to low heat losses and less stratified fuel and air mixtures compared to conventional diesel CI. The mechanisms behind the combustion process are not yet very well known. This work focuses on the efficiency and the in-cylinder process in terms of fuel distribution and the initial phase of the combustion. More specifically, double injection strategies are compared with single injection strategies to achieve different levels of stratification, ranging from HCCI to PPC like combustion as well as poor (43%) to good (49%) of gross indicated efficiency.
Journal Article

Transition from HCCI to PPC: Investigation of Fuel Distribution by Planar Laser Induced Fluorescence (PLIF)

2017-03-28
2017-01-0748
In a previous study, in order to investigate the effect of charge stratification on combustion behavior such as combustion efficiency and combustion phasing which also largely affects the emissions, an experiment was conducted in a heavy-duty compression ignition (CI) metal engine. The engine behavior and emission characteristics were studied in the transition from HCCI mode to PPC mode by varying the start of injection (SOI) timing. To gain more detailed information of the mixing process, in-cylinder laser diagnostic measurements, namely fuel-tracer planar laser induced fluorescence (PLIF) imaging, were conducted in an optical version of the heavy-duty CI engine mentioned above. To the authors’ best knowledge, this is the first time to perform fuel-tracer PLIF measurements in an optical engine with a close to production bowl in piston combustion chamber, under transition conditions from HCCI to PPC mode.
Technical Paper

Transition from HCCI to PPC Combustion by Means of Start of Injection

2015-09-01
2015-01-1790
Partially premixed combustion (PPC) is a promising way to achieve high efficiency and low engine-out emissions simultaneously in a heavy-duty engine. Compared to Homogeneous Charge Compression Ignition (HCCI), it can be controlled by injection events and much lower HC and CO emissions can be achieved. This work focuses on the transition from HCCI to PPC and combustion and emissions characteristics during the process are investigated. Injection strategies, EGR and boost pressure were the main parameters used to present the corresponding effect during the transition.
Technical Paper

Thermal Reduction of NOx in a Double Compression Expansion Engine by Injection of AAS 25 and AUS 32 in the Exhaust Gases

2019-01-15
2019-01-0045
The double compression expansion engine (DCEE) is a promising concept for high engine efficiency while fulfilling the most stringent European and US emission legislation. The complete thermodynamic cycle of the engine is split among several cylinders. Combustion of fuel occurs in the combustion cylinder and in the expansion cylinder the exhaust gases are over expanded to obtain high efficiency. A high-pressure tank is installed between these two cylinders for after-treatment purposes. One proposal is to utilize thermal reduction of nitrogen oxides (NOx) in the high-pressure tank as exhaust temperatures can be sufficiently high (above 700 °C) for the selective non-catalytic reduction (SNCR) reactions to occur. The exhaust gas residence time at these elevated exhaust temperatures is also long enough for the chemical reactions, as the volume of the high-pressure tank is substantially larger than the volume of the combustion cylinders.
Technical Paper

The Usefulness of Negative Valve Overlap for Gasoline Partially Premixed Combustion, PPC

2012-09-10
2012-01-1578
Partially premixed combustion has the potential of high efficiency and simultaneous low soot and NOx emissions. Running the engine in PPC mode with high octane number fuels has the advantage of a longer premix period of fuel and air which reduces soot emissions, even at higher loads. The problem is the ignitability at low load and idle operating conditions. The objective is to investigate the usefulness of negative valve overlap on a light duty diesel engine running with gasoline partially premixed combustion at low load operating conditions. The idea is to use negative valve overlap to trap hot residual gases to elevate the global in-cylinder temperature to promote auto-ignition of the high octane number fuel. This is of practical interest at low engine speed and load operating conditions because it can be assumed that the available boost is limited. The problem with NVO at low load operating conditions is that the exhaust gas temperature is low.
Technical Paper

The Potential of SNCR Based NOx Reduction in a Double Compression Expansion Engine

2018-04-03
2018-01-1128
Selective Non-Catalytic Reduction (SNCR), used to reduce the emissions of nitrogen oxides (NOx), has been a well-established technology in the power plant industry for several decades. The SNCR technique is an aftertreatment strategy based on thermal reduction of NOx at high temperatures. In the compression ignition engine application, the technology has not been applicable due to low exhaust temperatures, which makes the SCR (Selective Catalytic Reduction) system essential for efficient nitrogen oxide reduction to fulfill the environment legislation. For a general Double Compression Expansion Engine (DCEE) the complete expansion cycle is split in two separate cycles, i.e. the engine is a split cycle engine. In the first cylinder the combustion occurs and in the second stage the combustion gas is introduced and further expanded in a low-pressure expansion cylinder. The combustion cylinder is connected with the expansion cylinder through a large insulated high-pressure tank.
Technical Paper

The Effect of Injection Pressure on the NOx Emission Rates in a Heavy-Duty DICI Engine Running on Methanol.

2017-10-08
2017-01-2194
Heavy-duty direct injection compression ignition (DICI) engine running on methanol is studied at a high compression ratio (CR) of 27. The fuel is injected with a common-rail injector close to the top-dead-center (TDC) with two injection pressures of 800 bar and 1600 bar. Numerical simulations using Reynold Averaged Navier Stokes (RANS), Lagrangian Particle Tracking (LPT), and Well-Stirred-Reactor (WSR) models are employed to investigate local conditions of injection and combustion process to identify the mechanism behind the trend of increasing nitrogen oxides (NOx) emissions at higher injection pressures found in the experiments. It is shown that the numerical simulations successfully replicate the change of ignition delay time and capture variation of NOx emissions.
Technical Paper

System Simulations to Evaluate the Potential Efficiency of Humid Air Motors

2013-10-14
2013-01-2646
In the quest for efficiency improvement in heavy duty truck engines, waste heat recovery could play a valuable role. The evaporative cycle is a waste heat recovery technology aimed at improving efficiency and decreasing emissions. A humid air motor (HAM) uses the waste heat from the exhaust of the engine to humidify the inlet air; this humid air, with higher specific heat, reduces NOx emission to a greater extent [1] [2]. Despite this benefit of emission reduction, the increase or decrease in efficiency of the humid air motor compared to the conventional engine is not discussed in the literature [3] [4] [5]. In this paper, an attempt is made to study the efficiency of the HAM using system model simulations of a 13-liter heavy duty Volvo engine with a humidifier. The commercial software GT-SUITE is used to build the system model and to perform the simulations. The efficiency improvement of the HAM comes from the expansion of the vapor mass flow produced as a result of humidification.
Technical Paper

Stochastic Set-Point Optimization for In-Cycle Closed-Loop Combustion Control Operation

2021-04-06
2021-01-0531
The constrained indicated efficiency optimization of the set-point reference for in-cycle closed-loop combustion regulators is investigated in this article. Closed-loop combustion control is able to reduce the stochastic cyclic variations of the combustion by the adjustment of multiple-injections, a pilot and main injection in this work. The set-point is determined by the demand on engine load, burned pilot mass reference and combustion timing. Two strategies were investigated, the regulation of the start of combustion (SOC) and the center of combustion (CA50). The novel approach taken in this investigation consists of including the effect of the controlled variables on the combustion dispersion, instead of using mean-value models, and solve the stochastic optimization problem. A stochastic heat release model is developed for simulation and calibrated with extensive data from a Scania D13 six-cylinder engine. A Monte Carlo approach is taken for the simulations.
Technical Paper

Stochastic Model for the Investigation of the Influence of Turbulent Mixing on Engine Knock

2004-10-25
2004-01-2999
A stochastic model based on a probability density function (PDF) was developed for the investigation of different conditions that determine knock in spark ignition (SI) engine, with focus on the turbulent mixing. The model used is based on a two-zone approach, where the burned and unburned gases are described as stochastic reactors. By using a stochastic ensemble to represent the PDF of the scalar variables associated with the burned and the unburned gases it is possible to investigate phenomena that are neglected by the regular existing models (as gas non-uniformity, turbulence mixing, or the variable gas-wall interaction). Two mixing models are implemented for describing the turbulent mixing: the deterministic interaction by exchange with the mean (IEM) model and the stochastic coalescence/ dispersal (C/D) model. Also, a stochastic jump process is employed for modeling the irregularities in the heat transfer.
Journal Article

Simultaneous PLIF Imaging of OH and PLII Imaging of Soot for Studying the Late-Cycle Soot Oxidation in an Optical Heavy-Duty Diesel Engine

2016-04-05
2016-01-0723
The effects of injection pressure and swirl ratio on the in-cylinder soot oxidation are studied using simultaneous PLIF imaging of OH and LII imaging of soot in an optical diesel engine. Images are acquired after the end of injection in the recirculation zone between two adjacent diesel jets. Scalars are extracted from the images and compared with trends in engine-out soot emissions. The soot emissions decrease monotonically with increasing injection pressure but show a non-linear dependence on swirl ratio. The total amount of OH in the images is negatively correlated with the soot emissions, as is the spatial proximity between the OH and soot regions. This indicates that OH is an important soot oxidizer and that it needs to be located close to the soot to perform this function. The total amount of soot in the images shows no apparent correlation with the soot emissions, indicating that the amount of soot formed is a poor predictor of the emission trends.
Technical Paper

Simulation of System Brake Efficiency in a Double Compression-Expansion Engine-Concept (DCEE) Based on Experimental Combustion Data

2019-01-15
2019-01-0073
The double compression-expansion engine concepts (DCEE) are split-cycle concepts where the compression, combustion, expansion and gas exchange strokes occur in two or more different cylinders. Previous simulation studies reveal there is a potential to improve brake efficiency with these engine concepts due to improved thermodynamic and mechanical efficiencies. As a continuation of this project this paper studies an alternative layout of the DCEE-concept. The concept studied in this paper has three different cylinders, a compression, a combustion and an expansion cylinder. Overall system indicated and brake efficiency estimations were based on both engine experiments and simulations. The engine experiments were carried out at 10 different operating points and 5 fuelling rates (between 98.2 and 310.4 mg/cycle injection mass) at an engine speed of 1200 rpm. The inlet manifold pressure was varied between 3 and 5 bar.
Technical Paper

Simulation Based Investigation of Achieving Low Temperature Combustion with Methanol in a Direct Injected Compression Ignition Engine

2019-04-02
2019-01-1152
Low temperature combustion concepts used in compression ignition engines have shown to be able to produce simultaneous reduction of oxides of nitrogen and soot as well as generating higher gross indicated efficiencies compared to conventional diesel combustion. This is achieved by a combination of premixing, dilution and optimization of combustion phasing. Low temperature combustion can be complemented by moving away from fossil fuels in order to reduce the net output of CO2 emissions. Alternative fuels are preferably liquid and of sufficient energy density. As such methanol is proposed as a viable option. This paper reports the results from a simulation based investigation on a heavy-duty multi-cylinder direct injection compression ignition engine with standard compression ratio. The engine was simulated using two different fuels: methanol and gasoline with an octane number of 70.
Journal Article

Sensitivity Analysis Study on Ethanol Partially Premixed Combustion

2013-04-08
2013-01-0269
Partially Premixed Combustion (PPC) is a combustion concept which aims to provide combustion with low smoke and NOx with high thermal efficiency. Extending the ignition delay to enhance the premixing, avoiding spray-driven combustion and controlling the combustion temperature at an optimum level through use of suitable lambda and EGR levels have been recognized as key factors to achieve such a combustion. Fuels with high ignitability resistance have been proven to be a useful to extend the ignition delay. In this work pure ethanol has been used as a PPC fuel. The objective of this research was initially to investigate the required operating conditions for PPC with ethanol. Additionally, a sensitivity analysis was performed to understand how the required parameters for ethanol PPC such as lambda, EGR rate, injection pressure and inlet temperature influence the combustion in terms of controllability, stability, emissions (i.e.
Technical Paper

Scalability Aspects of Pre-Chamber Ignition in Heavy Duty Natural Gas Engines

2016-04-05
2016-01-0796
This article presents a study related to application of pre-chamber ignition system in heavy duty natural gas engine which, as previously shown by the authors, can extend the limit of fuel-lean combustion and hence improve fuel efficiency and reduce emissions. A previous study about the effect of pre-chamber volume and nozzle diameter on a single cylinder 2 liter truck-size engine resulted in recommendations for optimal pre-chamber geometry settings. The current study is to determine the dependency of those settings on the engine size. For this study, experiments are performed on a single cylinder 9 liter large bore marine engine with similar pre-chamber geometry and a test matrix of similar and scaled pre-chamber volume and nozzle diameter settings. The effect of these variations on main chamber ignition and the following combustion is studied to understand the scalability aspects of pre-chamber ignition. Indicated efficiency and engine-out emission data is also presented.
Technical Paper

Review and Benchmarking of Alternative Fuels in Conventional and Advanced Engine Concepts with Emphasis on Efficiency, CO2, and Regulated Emissions

2016-04-05
2016-01-0882
Alternative fuels have been proposed as a means for future energy-secure and environmentally sustainable transportation. This review and benchmarking show that several of the alternative fuels (e.g. methanol, ethanol, higher alcohols, RME, HVO, DME, and biogas/CNG) work well with several different engine concepts such as conventional SI, DICI, and dual fuel, and with the emerging concepts HCCI, RCCI, and PPC. Energy consumption is in most cases similar to that of diesel or gasoline, with the exception of methanol and ethanol that use less energy, especially in SI engines. Tailpipe emissions of CO2 with respect to engine work output (tank-to-output shaft) can be reduced by more than 15% compared to a highly efficient gasoline SI engine, and are the lowest with CNG / lean-burn SI and with alcohols in several engine concepts. Alternative fuels are considered safe and in most cases are associated with reduced risk with respect to cancer and other health and environmental issues.
X