Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Intake Manifold Length Effects on Turbocharged Gasoline Downsizing Engine Performance and Fuel Economy

2012-04-16
2012-01-0714
Downsizing of the spark ignition engine is accepted as a key contributor to reducing fuel consumption. Turbocharged engines are becoming commonplace in passenger vehicles, replacing naturally aspirated larger capacity engines. However, turbocharged engines have typically suffered from “lag” during transient operation. This perceived effect is a combination of the low speed steady state torque and a slower rate to reach maximum torque during a load step. In order to increase customer acceptance of downsized concepts it is vital that the low speed torque and transient response are optimized. Variable Length Intake Manifolds (VLIM) have long been an established method of improving the full load performance of naturally aspirated engines. The manifold length being “tuned” to provide a high-pressure pulse at intake valve closing to maximize cylinder filling and deliver improved performance.
Technical Paper

Future Gasoline Engine Technology and the Effect on Thermal Management and Real World Fuel Consumption

2013-04-08
2013-01-0271
Emissions legislation, fleet CO₂ targets and customer demands are driving the requirements for reducing fuel consumption. This is being achieved in the gasoline market in the near term through the adoption of engine downsizing. In order to reduce fuel consumption further and in the wider real-world operating region complimentary technologies are being investigated and applied to an extreme downsized engine. In this paper future gasoline engine technologies are applied and experimentally assessed in terms of fuel consumption improvement whilst the impact of subsequent loadings on the thermal management system have been simulated, both over drive cycle and using real-world drive data.
X