Refine Your Search

Topic

Author

Search Results

Technical Paper

Vibration Measurement in Flight

1937-01-01
370175
EQUIPMENT for measuring vibration in airplane structures and powerplants during actual flight is described in this paper. This development is the result of a cooperative research program carried out by the Bureau of Aeronautics of the U. S. Navy and the Massachusetts Institute of Technology with contributions of improvements in design and new features by the Sperry Gyroscope Co., Inc. In its essentials, the M.I.T.-Sperry Apparatus consists of a number of electrical pickup units which operate a central amplifying and recording unit. The recorder is a double-element photographic oscillograph. Each pickup is adapted especially to the type of vibration that it is intended to measure and is made so small that it does not appreciably affect the vibration characteristics of the member to which it is attached rigidly. By using a number of systematically placed pickups, all the necessary vibration information on an airplane can be recorded during a few short flights.
Technical Paper

Utilization of a Chassis Dynamometer for Development of Exterior Noise Control Systems

1997-05-20
972012
The development of systems and components for control of exterior noise has traditionally been done through an iterative process of on road testing. Frequently, road testing of vehicle modifications are delayed due to ambient environmental changes that prevent testing. Vehicle dynamometers used for powertrain development often had limited space preventing far field measurements. Recently, several European vehicle manufacturers constructed facilities that provided adequate space for simulation of the road test. This paper describes the first implementation of that technology in the U.S.. The facility is typical of those used world wide, but it is important to recognize some of the challenges to effective utilization of the technique to correlate this measurement to on road certification.
Technical Paper

The National Space Biomedical Research Institute Education and Public Outreach Program: Engaging the Public and Inspiring the Next Generation of Space Explorers

2005-07-11
2005-01-3105
The National Space Biomedical Research Institute (NSBRI), established in 1997, is a twelve-university consortium dedicated to research that will impact mankind's next exploratory steps. The NSBRI's Education and Public Outreach Program (EPOP), is supporting NASA's education mission to, “Inspire the next generations…as only NASA can,” through a comprehensive Kindergarten through post-doctoral education program. The goals of the EPOP are to: communicate space exploration biology to schools; support undergraduate and graduate space-based courses and degrees; fund postdoctoral fellows to pursue space life sciences research; and engage national and international audiences to promote understanding of how space exploration benefits people on Earth. NSBRI EPOP presents its accomplishments as an educational strategy for supporting science education reform, workforce development, and public outreach.
Technical Paper

The General Motors Driving Simulator

1994-03-01
940179
A driving simulator development project at the Systems Engineering and Technical Process Center (SE/TP) is exploring the role of driving simulation in the vehicle design process. The simulator provides two vehicle mockup testing arenas that support a wide field of view, computer-generated image of the road scene which dynamically responds to driver commands as a function of programmable vehicle model parameters. Two unique aspects of the simulator are the fast 65 ms response time and low incidence rate of simulator induced syndrome (about 5%). Preliminary model validation results and data comparing driver performance in a vehicle vs. the simulator indicate accurate handling response dynamics within the on-center handling region (<0.3g lateral acceleration). Applications have included supporting the development of new steering system concepts, as well as evaluating the usability of vehicle controls and displays.
Technical Paper

The Application of Direct Body Excitation Toward Developing a Full Vehicle Objective Squeak and Rattle Metric

2001-04-30
2001-01-1554
In order to engineer Squeak & Rattle (S&R) free vehicles it is essential to develop an objective measurement method to compare and correlate with customer satisfaction and subjective S&R assessments. Three methods for exciting S&Rs -type surfaces. Excitation methods evaluated were road tests over S&R surfaces, road simulators, and direct body excitation (DBE). The principle of DBE involves using electromagnetic shakers to induce controlled, road-measured vibration into the body, bypassing the tire patch and suspension. DBE is a promising technology for making objective measurements because it is extremely quiet (test equipment noise does not mask S&Rs), while meeting other project goals. While DBE is limited in exposing S&Rs caused by body twist and suspension noises, advantages include higher frequency energy owing to electro-dynamic shakers, continuous random excitation, lower capital cost, mobility, and safety.
Technical Paper

The Anatomy of Knock

2016-04-05
2016-01-0704
The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
Technical Paper

THE GMR 4-4 “HYPREX” ENGINE A CONCEPT OF THE FREE-PISTON ENGINE FOR AUTOMOTIVE USE

1957-01-01
570032
DESCRIBED here is a 250-hp free-piston gasifier-turbine engine that has actually been installed in an automobile. A unique feature of this Hyprex engine is that it is a siamesed unit. The overall design has been selected, according to the author, to secure a compact, light-weight machine with improved thermal efficiency and with a reduction in general noise. Although the engine is still in the experimental stage, the author reports that analysis and results indicate it will be a serious contender for powering automotive vehicles.
Technical Paper

Statistical Energy Analysis of Airborne and Structure-Borne Automobile Interior Noise

1997-05-20
971970
This paper describes the application of Statistical Energy Analysis (SEA) and Experimental SEA (ESEA) to calculating the transmission of air-borne and structure-borne noise in a mid-sized sedan. SEA can be applied rapidly in the early stages of vehicle design where the degree of geometric detail is relatively low. It is well suited to the analysis of multiple paths of vibrational energy flow from multiple sources into the passenger compartment at mid to high frequencies. However, the application of SEA is made difficult by the geometry of the vehicle's subsystems and joints. Experience with current unibody vehicles leads to distinct modeling strategies for the various frequency ranges in which airborne or structure-borne noise predominates. The theory and application of ESEA to structure-borne noise is discussed. ESEA yields loss factors and input powers which are combined with an analytical SEA model to yield a single hybrid model.
Technical Paper

Squeak Studies on Material Pair Compatibility

2001-04-30
2001-01-1546
The more noise and vibration improvements are incorporated into our vehicles, the more customers notice squeaks and rattles (S&R). Customers increasingly perceive S&R as a direct indicator of vehicle build quality and durability. The high profile nature of S&R has the automotive industry striving to develop the understanding and technology of how to improve the S&R performance in the vehicle. Squeaks and itches make up a significant amount of Squeak and Rattle complaints found in today's vehicles. Squeaks and itches are the result of stick slip behavior between two interacting surfaces. Squeak itch behavior is dependent upon a large number of parameters including but not limited to: the material itself, temperature, humidity, normal load, system compliance, part geometry, velocity, surface roughness, wear, contaminants, etc. This paper will describe the analysis of sound data and friction data and the relationship between them.
Technical Paper

Sound Quality of Impulsive Noises: An Applied Study of Automotive Door Closing Sounds

1999-05-17
1999-01-1684
This paper discusses four general attributes which quantify the character of an impulsive sound event. These attributes include the time duration, amplitude and frequency content of the impulsive noise. A three dimensional plot relating time, frequency and amplitude have been developed for the presentation of the measured data. This format allows graphic illustration of the noise event, providing fast interpretation and communication of the measured sound. Application of this methodology to the sound of an automotive door closing event is presented here. Representative door closing sound events are analyzed, with correlation presented between the attributes above to dynamic events of the physical hardware within the door and vehicle systems. Modifications of the door-in-white, internal door hardware, seal systems and additional content are investigated for their effect on the sound quality of the door closing event. Finally, recommended values for these attributes are presented.
Technical Paper

Size, Weight and Biomechanical Impact Response Requirements for Adult Size Small Female and Large Male Dummies

1989-02-01
890756
This paper summarizes the rationale used to specify the geometric, inertial and impact response requirements for a small adult female dummy and a large adult male dummy with impact biofidelity and measurement capacity comparable to the Hybrid III dummy, the most advanced midsize adult male dummy. Body segment lengths and weights for these two dummies were based on the latest anthropometry studies for the extremes of the U.S.A. adult population. Other characteristic body segment dimensions were calculated from geometric and mass scaling relationships that assured that each body segment had the same mass density as the corresponding body segment of the Hybrid III dummy. The biomechanical impact response requirements for the head, neck, chest and knee of the Hybrid III dummy were scaled to give corresponding biomechanical impact response requirements for each dummy.
Technical Paper

Safety Belt Buckle Environment in Vehicle Planar Crash Tests

2008-04-14
2008-01-1231
A study was conducted by General Motors at its crash test facility located at the Milford Proving Ground. The intent of this study was to expand upon the currently available research regarding the safety belt buckle environment during full scale planar crash tests. Buckle accelerations and webbing tensions were measured and recorded to characterize, in part, buckle responses in a crash environment. Previous studies have focused primarily on the component level testing of safety belt buckles. The crash tests included a variety of vehicles, impact types, seating positions, Anthropomorphic Test Devices (ATDs), impact speeds, and impact angles. Also included were various safety belt restraint systems and pretensioner designs. This study reports on data recorded from 100 full scale crash tests with 180 instrumented end release safety belt buckles. Acceleration measurements were obtained with tri-axial accelerometers mounted onto the buckles.
Technical Paper

SEA in Vehicle Development Part I: Balancing of Path Contribution for Multiple Operating Conditions

2003-05-05
2003-01-1546
The application of Statistical Energy Analysis (SEA) to vehicle development is discussed, with a new technique to implement noise path analysis within a SEA model to enable efficient solution and optimization of acoustic trim. A whole vehicle Performance-Based SEA model is used, in which Sound Transmission Loss (STL) and acoustic absorption coefficient characterize subsystem performance. In such a model, the net contribution from each body panel/path, such as the floor, to a specific interior subsystem, such as the driver's head space, is extremely important for vehicle interior noise development. First, it helps to identify the critical path to root-cause potential problems. Second, it is necessary in order to perform balancing of path contributions. With current software, the power based noise contribution analysis is for direct paths/adjacent subsystems.
Technical Paper

Rollover and Drop Tests - The Influence of Roof Strength on Injury Mechanics Using Belted Dummies

1990-10-01
902314
This report presents the test methods and results of a study involving lap/shoulder belted dummies in dynamic dolly rollover tests and inverted vehicle drop tests. Data are presented showing dummy neck loadings resulting from head impacts to the vehicle interior as the vehicle contacts the ground. Comparison of the number and magnitude of axial neckloads are presented for rollcaged and production vehicles, as well as an analysis of the factors which influence neckloads under these conditions.
Technical Paper

Results of the Motor Vehicle Manufacturers Association Component and Full-Vehicle Side Impact Test Procedure Evaluation Program

1985-01-01
856087
This paper presents an extensive research program undertaken to develop improved side impact test methods. The development of a component side impact test device along with an associated test procedure are reviewed. The results of accident data analysis techniques to define anatomical areas most likely to be injured during side impact and definition of test device response corridors based on human surrogate testing conducted by the Association Peugeot/Renault and the University of Heidelberg are discussed. The relationship of response corridors and accident data analysis in earlier phases of the project resulted in definition and development of a component side impact test device to represent the human thorax. A test program to evaluate and compare component and full-vehicle test results is presented.
Technical Paper

Research Alliances, A Strategy for Progress

1995-09-01
952146
In today's business climate rapid access to, and implementation of, new technology is essential to enhance competitive advantage. In the past, universities have been used for research contracts, but to fully utilize the intellectual resources of education institutions, it is essential to approach these relationships from a new basis: alliance. Alliances permit both parties to become active participants and achieve mutually beneficial goals. This paper will examine the drivers and challenges for industrial -- university alliances from both the industrial and academic perspectives.
Technical Paper

Requirements and Potential for Enhanced EVA Information Interfaces

2003-07-07
2003-01-2413
NASA has long recognized the advantages of providing improved information interfaces to EVA astronauts and has pursued this goal through a number of development programs over the past decade. None of these activities or parallel efforts in industry and academia has so far resulted in the development of an operational system to replace or augment the current extravehicular mobility unit (EMU) Display and Controls Module (DCM) display and cuff checklist. Recent advances in display, communications, and information processing technologies offer exciting new opportunities for EVA information interfaces that can better serve the needs of a variety of NASA missions. Hamilton Sundstrand Space Systems International (HSSSI) has been collaborating with Simon Fraser University and others on the NASA Haughton Mars Project and with researchers at the Massachusetts Institute of Technology (MIT), Boeing, and Symbol Technologies in investigating these possibilities.
Technical Paper

Refinement and Verification of the Structural Stress Method for Fatigue Life Prediction of Resistance Spot Welds Under Variable Amplitude Loads

2000-10-03
2000-01-2727
The work presented here builds on the practical and effective spot weld fatigue life prediction method, the structural stress method (SSM), that was developed at Stanford University. Constant amplitude loading tests for various spot weld joint configurations have been conducted and the SSM has been shown to accurately predict fatigue life. In this paper refinements to the structural stress approach are first presented, including a variable amplitude fatigue life prediction method based on the SSM and Palmgren-Miner's rule. A test matrix was designed to study the fatigue behavior of spot welds under tensile shear loading conditions. Constant amplitude tests under different R-ratios were performed first to obtain the necessary material properties. Variable amplitude tests were then performed for specimens containing single and multiple welds.
Technical Paper

Racing Car Restraint System Frontal Crash Performance Testing

1994-12-01
942482
This paper presents the results of a series of over 30 impact sled simulations of racing car frontal crashes conducted as part of the GM Motorsports Safety Technology Research Program. A Hyge™ impact sled fitted with a simulated racing car seat and restraint system was used to simulate realistic crash loading with a mid-size male Hybrid III dummy. The results of tests, in the form of measured loads, displacements, and accelerations, are presented and comparisons made with respect to the levels of these parameters seen in typical passenger car crash testing and to current injury threshold values.
Technical Paper

Part Two - Dummies - Description and Basis of a Three-Year-Old Child Dummy Or Evaluating Passenger Inflatable Restraint Concepts

1982-01-01
826040
A primary concern in the development of a passenger inflatable restraint system is the possibility that a child could be in the path of the deploying cushion either due to initial position at the time of an accident or due to precrash braking accompanying an accident. Previous studies by General Motors and Volvo have indicated that serious injuries to children are possible if the cushion/child interaction forces are not controlled by system design. This paper describes an instrumented child dummy which was developed to provide measurements of the various cushion/child interaction forces. An analysis is given describing the types of injuries which could be associated with the various types of interaction forces. These results were used to develop appropriate dummy instrumentation for indicating the severity of the cushion/child interaction. A description of the modifications made to an existing three-year-old child dummy are described.
X