Refine Your Search

Topic

Author

Search Results

Technical Paper

the effect of Residual Stresses Induced by Strain-Peening upon Fatigue Strength

1960-01-01
600018
THE PURPOSE of this experiment was to determine the role of residual stresses in fatigue strength independent of other factors usually involved when residual stresses are introduced. It consisted of an investigation of the influence of residual stresses introduced by shotpeening on the fatigue strength of steel (Rockwell C hardness 48) in unidirectional bending. Residual stresses were varied by peening under various conditions of applied strain. This process introduced substantially the same amount and kind of surface cold working with residual stresses varying over a wide range of values. It was found that shotpeening of steel of this hardness is beneficial primarily because of the nature of the macro-residual-stresses introduced by the process. There is no gain attributable to “strain-hardening” for this material. An effort was made to explain the results on the basis of three failure criteria: distortion energy, maximum shear stress, and maximum stress.*
Technical Paper

some metallurgical aspects of … Pontiac V-8 Engine Pearlitic Malleable Iron Crankshaft

1958-01-01
580013
PEARLITIC malleable iron crankshafts are being used in the new Pontiac engine as a result of recent developments. This paper discusses the physical properties of pearlitic malleable iron such as elastic modulus, fatigue endurance, and tensile strength. According to the author, definite machining economies result from using pearlitic malleable iron crankshafts.
Technical Paper

Vehicle Crash Research and Manufacturing Experience

1968-02-01
680543
The search for improvements in occupant protection under vehicle impact is hampered by a real lack of reliable biomechanical data. To help fill this void, General Motors has initiated joint research with independent researchers such as the School of Medicine, U. C. L. A. – in this case to study localized head and facial trauma — and has developed such unique laboratory tools as “Tramasaf,” a human-simulating headform, and “MetNet,” a pressure-sensitive metal foam. Research applied directly to product design also has culminated in developments such as the Side-Guard Beam for side impact protection.
Technical Paper

Variation in Cyclic Deformation and Strain-Controlled Fatigue Properties Using Different Curve Fitting and Measurement Techniques

1999-03-01
1999-01-0364
The strain-life approach is now commonly used for fatigue life analysis and predictions in the ground vehicle industry. This approach requires the use of material properties obtained from strain-controlled uniaxial fatigue tests. These properties include fatigue strength coefficient (σf′), fatigue strength exponent (b), fatigue ductility coefficient (εf′), fatigue ductility exponent (c), cyclic strength coefficient (K′), and cyclic strain hardening exponent (n′). To obtain the aforementioned properties for the material, raw data from stable cyclic stress-strain loops are fitted in log-log scale. These data include total, elastic and plastic strain amplitudes, stress amplitude, and fatigue life. Values of the low cycle fatigue properties (σf′, b, εf′, c) determined from the raw data depend on the method of measurement and fitting. This paper examines the merits and influence of using different measurement and fitting methods on the obtained properties.
Technical Paper

The National Space Biomedical Research Institute Education and Public Outreach Program: Engaging the Public and Inspiring the Next Generation of Space Explorers

2005-07-11
2005-01-3105
The National Space Biomedical Research Institute (NSBRI), established in 1997, is a twelve-university consortium dedicated to research that will impact mankind's next exploratory steps. The NSBRI's Education and Public Outreach Program (EPOP), is supporting NASA's education mission to, “Inspire the next generations…as only NASA can,” through a comprehensive Kindergarten through post-doctoral education program. The goals of the EPOP are to: communicate space exploration biology to schools; support undergraduate and graduate space-based courses and degrees; fund postdoctoral fellows to pursue space life sciences research; and engage national and international audiences to promote understanding of how space exploration benefits people on Earth. NSBRI EPOP presents its accomplishments as an educational strategy for supporting science education reform, workforce development, and public outreach.
Technical Paper

The General Motors Driving Simulator

1994-03-01
940179
A driving simulator development project at the Systems Engineering and Technical Process Center (SE/TP) is exploring the role of driving simulation in the vehicle design process. The simulator provides two vehicle mockup testing arenas that support a wide field of view, computer-generated image of the road scene which dynamically responds to driver commands as a function of programmable vehicle model parameters. Two unique aspects of the simulator are the fast 65 ms response time and low incidence rate of simulator induced syndrome (about 5%). Preliminary model validation results and data comparing driver performance in a vehicle vs. the simulator indicate accurate handling response dynamics within the on-center handling region (<0.3g lateral acceleration). Applications have included supporting the development of new steering system concepts, as well as evaluating the usability of vehicle controls and displays.
Technical Paper

The Application of Direct Body Excitation Toward Developing a Full Vehicle Objective Squeak and Rattle Metric

2001-04-30
2001-01-1554
In order to engineer Squeak & Rattle (S&R) free vehicles it is essential to develop an objective measurement method to compare and correlate with customer satisfaction and subjective S&R assessments. Three methods for exciting S&Rs -type surfaces. Excitation methods evaluated were road tests over S&R surfaces, road simulators, and direct body excitation (DBE). The principle of DBE involves using electromagnetic shakers to induce controlled, road-measured vibration into the body, bypassing the tire patch and suspension. DBE is a promising technology for making objective measurements because it is extremely quiet (test equipment noise does not mask S&Rs), while meeting other project goals. While DBE is limited in exposing S&Rs caused by body twist and suspension noises, advantages include higher frequency energy owing to electro-dynamic shakers, continuous random excitation, lower capital cost, mobility, and safety.
Technical Paper

Scavenging the 2-Stroke Engine

1954-01-01
540258
THE indicated output of a 2-stroke engine is primarily dependent upon the success with which the products of combustion are driven from the cylinder and are replaced by fresh air or mixture during the scavenging period. Such replacement must, of course, be accomplished with a minimum of blower power. This paper deals with various aspects of 2-stroke research conducted at M.I.T. during the past 10 years. Among the subjects discussed are the methods used in the prediction and measurement of scavenging efficiency, and the effect of engine design and operating variables on the scavenging blower requirements as reflected by the scavenging ratio.
Technical Paper

Research Alliances, A Strategy for Progress

1995-09-01
952146
In today's business climate rapid access to, and implementation of, new technology is essential to enhance competitive advantage. In the past, universities have been used for research contracts, but to fully utilize the intellectual resources of education institutions, it is essential to approach these relationships from a new basis: alliance. Alliances permit both parties to become active participants and achieve mutually beneficial goals. This paper will examine the drivers and challenges for industrial -- university alliances from both the industrial and academic perspectives.
Technical Paper

Requirements and Potential for Enhanced EVA Information Interfaces

2003-07-07
2003-01-2413
NASA has long recognized the advantages of providing improved information interfaces to EVA astronauts and has pursued this goal through a number of development programs over the past decade. None of these activities or parallel efforts in industry and academia has so far resulted in the development of an operational system to replace or augment the current extravehicular mobility unit (EMU) Display and Controls Module (DCM) display and cuff checklist. Recent advances in display, communications, and information processing technologies offer exciting new opportunities for EVA information interfaces that can better serve the needs of a variety of NASA missions. Hamilton Sundstrand Space Systems International (HSSSI) has been collaborating with Simon Fraser University and others on the NASA Haughton Mars Project and with researchers at the Massachusetts Institute of Technology (MIT), Boeing, and Symbol Technologies in investigating these possibilities.
Technical Paper

Reliable Processes of Simulating Liner Roughness and Its Lubrication Properties

2019-04-02
2019-01-0178
Topology of liner finish is critical to the performance of internal combustion engines. Proper liner finish simulation processes lead to efficient engine design and research. Fourier methods have been well studied to numerically generate liner topology. However, three major issues wait to be addressed to make the generation processes feasible and reliable. First, in order to simulate real plateau honed liners, approaches should be developed to calculate accurate liner geometric parameters. These parameters are served as the input of the generation algorithm. Material ratio curve, the common geometry calculation method, should be modified so that accurate root mean square of plateau height distribution could be obtained. Second, the set of geometric parameters used in generating liner finish (ISO 13565-2) is different from the set of parameters used in manufacturing industry (ISO 13565-3). Quantitative relations between these two sets should be studied.
Technical Paper

Refinement and Verification of the Structural Stress Method for Fatigue Life Prediction of Resistance Spot Welds Under Variable Amplitude Loads

2000-10-03
2000-01-2727
The work presented here builds on the practical and effective spot weld fatigue life prediction method, the structural stress method (SSM), that was developed at Stanford University. Constant amplitude loading tests for various spot weld joint configurations have been conducted and the SSM has been shown to accurately predict fatigue life. In this paper refinements to the structural stress approach are first presented, including a variable amplitude fatigue life prediction method based on the SSM and Palmgren-Miner's rule. A test matrix was designed to study the fatigue behavior of spot welds under tensile shear loading conditions. Constant amplitude tests under different R-ratios were performed first to obtain the necessary material properties. Variable amplitude tests were then performed for specimens containing single and multiple welds.
Technical Paper

Recommendations for Real-Time Decision Support Systems for Lunar and Planetary EVAs

2007-07-09
2007-01-3089
Future human space exploration includes returning to the Moon and continuing to Mars. Essential to these missions is each planetary extravehicular activity, or EVA, where astronauts and robotic agents will explore lunar and planetary surfaces. Real-time decision support systems will help these explorers in efficiently planning and re-planning under time pressure sorties. Information and functional requirements for such a system are recommended and are based on on-going human-computer collaboration research.
Technical Paper

Numerical Simulation of a Vehicle Side Impact Test: Development. Application and Design Iterations

1996-02-01
960101
This paper describes a numerical simulation technique applicable to the FMVSS 214 side impact test through the use of the finite element method (FEM) technology. The paper outlines the development of the side impact dummy (SID), moving deformable barrier (MDB) and the test vehicle FEM models, as well as the development of new advanced constitutive models of materials and algorithms in LS-DYNA3D which are related to the topic. Presented in the paper are some initial simulation problems which were encountered and solved, as well as the correlation of the simulation data to the physical test.
Technical Paper

New Demands from an Older Population: An Integrated Approach to Defining the Future of Older Driver Safety

2006-10-16
2006-21-0008
The nearly 77 million baby boomers, born between 1946 and 1964, can say that they are the automobile generation. Now turning 60 one every seven seconds, what are the new safety challenges and opportunities posed by the next generation of older adults? This paper presents a modified Haddon matrix to identify key product development, design and liability issues confronting the automobile industry and related stakeholders. The industry is now at a critical juncture to address the development of key technological innovations as well as the changing policy and liability environments being reshaped by an aging population.
Technical Paper

Multiple Solutions by Performance Band: An Effective Way to Deal with Modeling Error

2004-03-08
2004-01-1688
Robust optimization usually requires numerous functional evaluations, which is not feasible when the functional evaluation is time-consuming. Examples in automobile industry include crash worthiness/safety and fatigue life simulations. In practice, a response surface model (RSM) is often used as a surrogate to the CAE model, so that robust optimization can be carried out. However, if the error in the RSM is significant, the solution based on the RSM can be invalid. This paper proposes a method of finding multiple candidate solutions, all of which have similar predicted performances. This approach is effective in finding the close-to-optimum solutions when the model has error, and providing design alternatives. Examples are provided to illustrate the method.
Technical Paper

Monotonic and Fatigue Behavior of Magnesium Extrusion Alloy AM30: An International Benchmark Test in the “Magnesium Front End Research and Development Project”

2010-04-12
2010-01-0407
Magnesium alloys are the lightest structural metal and recently attention has been focused on using them for structural automotive components. Fatigue and durability studies are essential in the design of these load-bearing components. In 2006, a large multinational research effort, Magnesium Front End Research & Development (MFERD), was launched involving researchers from Canada, China and the US. The MFERD project is intended to investigate the applicability of Mg alloys as lightweight materials for automotive body structures. The participating institutions in fatigue and durability studies were the University of Waterloo and Ryerson University from Canada, Institute of Metal Research (IMR) from China, and Mississippi State University, Westmorland, General Motors Corporation, Ford Motor Company and Chrysler Group LLC from the United States.
Technical Paper

Modeling Space Suit Mobility: Applications to Design and Operations

2001-07-09
2001-01-2162
Computer simulation of extravehicular activity (EVA) is increasingly being used in planning and training for EVA. A space suit model is an important, but often overlooked, component of an EVA simulation. Because of the inherent difficulties in collecting angle and torque data for space suit joints in realistic conditions, little data exists on the torques that a space suit’s wearer must provide in order to move in the space suit. A joint angle and torque database was compiled on the Extravehicular Maneuvering Unit (EMU), with a novel measurement technique that used both human test subjects and an instrumented robot. Using data collected in the experiment, a hysteresis modeling technique was used to predict EMU joint torques from joint angular positions. The hysteresis model was then applied to EVA operations by mapping out the reach and work envelopes for the EMU.
Technical Paper

Mission Planning and Re-planning for Planetary Extravehicular Activities: Analysis of Excursions in a Mars-Analog Environment and Apollo Program

2006-07-17
2006-01-2297
Future planetary extravehicular activities (EVAs) will go beyond what was experienced during Apollo. As mission duration becomes longer, inevitably, the astronauts on the surface of the Moon and Mars will actively plan and re-plan their own sorties. To design robust decision support aids for these activities, we have to first characterize all the different types of excursions that are possible. This paper describes a framework that organizes parameters and constraints that define a single planetary EVA. We arrived at this framework through case studies: by reviewing the EVA lessons learned during Apollo, conducting an observational study of excursions in a Mars-analog environment, and applying part of the framework to a prototype path planner for human planetary exploration.
X