Refine Your Search

Topic

Author

Search Results

Technical Paper

Ventilation Characteristics of Modeled Compact Car Part 6 - Numerical Analysis of Heat Transfer Characteristics by CRI

2012-04-16
2012-01-0640
In the present study, numerical simulation coupling convection and radiation in vehicle was done to analyze the formation of the temperature field under the non-uniform thermal condition. The scaled cabin model of simplified compact car was used and the thermal condition was determined. The fore floor, the top side of the inst. panel, the front window and the ceiling were heat source. The lateral side walls were cooled by the outdoor air and the other surfaces were adiabatic. It is same with the experimental condition presented in Part 5. In order to analyze the individual influence of each heat source, Contribution Ratio of Indoor climate (CRI) index was used. CRI is defined as the ratio of the temperature rise at a point from one individual heat source to the temperature rise under the perfect mixing conditions for the same heat source.
Technical Paper

Thixomolding® of Magnesium Automotive Components

1998-02-23
980087
Thixomolding® produces net-shape parts from Magnesium alloys in a single step process involving high speed injection molding of semi-solid thixotropic alloys. A description of the process and status of commercial developments will be presented.. The mechanical properties and microstructures of Thixomolded® AZ-91D magnesium materials will be presented. Tensile strengths of semi-solid AZ-91D at both room temperature and elevated temperatures ( 373K, 423K) are compared with die cast AZ-91D. Data on enhanced creep properties of Thixomolded® AZ91-D alloy relative to die cast AZ-91D will be examined with respect to relative changes in microstructural features. Controlling the percent solids in the semi-solid state prior to injection molding can lead to improved creep performance for use in net-shape automotive components.
Technical Paper

Thermal Effect on Three-Way Catalyst Deactivation and Improvement

1987-11-08
871192
Thermal effects on three-way catalysts and deterioration characteristics were studied. Aging atmosphere (oxidizing or reducing) and temperature contributed to catalyst performance deterioration. Catalysts sharply lost their activities under oxidizing conditions at an aging temperature of 900°C and above. Thermal degradation was found due mainly to the decrease in the surface area of alumina coated on the substrate and the increase in the size of cerium oxide (CeO2) crystal particle, an oxgen storage component (OSC). Also observed was a close correlation between the alumina surface area loss and the volume loss of micro pores with their radius less than 100 Å. Tests demonstrated that the catalyst thermal degradation can be reduced if the alumina micro pore volume loss and the CeO2 crystal particle size increase are restrained.
Technical Paper

The Evaluation of the Influence of Vehicle Crashworthiness and Interior Parts on Occupant Injury

1989-09-01
892009
In order to secure effective occupant protection at vehicle collisions, it is necessary to conduct close examination into vehicle crash characteristics as well as interior parts, etc. This paper analyzes the behavior of a HYBRID III dummy restrained by three point seatbelt using MVMA2D computer simulation program at a 35 mph vehicle frontal barrier crash. As a result, it is found for good agreement between experiment and simulation that the exact input data of successive toeboard intrusion play an important role. As for the parametric study on vehicle crashworthiness, the authors propose the convenient method to represent the actual crash pulse by two simplified trapezoids. Then using these trapezoids, the parametric study clarifies the influence of vehicle deformation characteristics as well as the interior parts on dummy injury.
Technical Paper

The Effect of Ceria Content on the Performance of a NOx Trap

2003-03-03
2003-01-1160
A study was performed on a lean NOx trap in which the loading of a ceria-containing mixed oxide in the washcoat was varied. After a mild stabilization of the traps, the time required to purge the NOx trap generally increased with increasing amount of mixed oxide. The purge NOx release also increased with increasing mixed oxide level but was greatly diminished after thermal aging. The sulfur tolerance of the NOx trap improved as the mixed oxide content was increased from 0% to 37%. The sample with 0% mixed oxide was more difficult to desulfate than the other samples due to poor water-gas-shift capability. After thermal aging, the NOx reduction efficiency on a 60 second lean/5 second rich cycle was highest for the samples with 0% to 37% mixed oxide at evaluation temperatures of 400°C to 500°C.
Technical Paper

Study of BioRID II Sled Testing and MADYMO Simulation to Seek the Optimized Seat Characteristics to Reduce Whiplash Injury

2004-03-08
2004-01-0336
Development of anti-whiplash technology is one of the hottest issues in the automotive safety field because of the frequent occurrence of rear impact accidents. We analyzed the whiplash mechanism and conducted a study to seek the optimized seat characteristics with BioRID II and MADYMO simulations. A parameter study was made to construct a conceptual theory to decrease NIC, Neck Injury Criteria, with the MADYMO model. As a result of the study, head restraint position and seatback stiffness were found to affect dummy movement and injury values. Applying the NIC mechanism and the influential parameters to the MADYMO model, the optimized seat characteristics for whiplash prevention were obtained.
Technical Paper

Seat Lumbar Support Evaluation With ASPECT Manikin

2005-04-11
2005-01-1007
Seat lumbar support is thought to be essential for seating comfort as it plays important role in the driver's fatigue during long term driving. We tried to evaluate the lumbar support performance objectively with Seat Pressure Distribution. First, the tolerance in the measurement was eliminated by application of ASPECT manikin that reproduced a human seating torso posture [1, 2]. Second, an analysis method to visualize the seat support balance on the human back was developed. Third, a hypothesis for the optimal support balance to minimize the fatigue was proposed according to the fatigue growing mechanisms. Examining the deviation of each seat result from the optimal support, the performances were quantitatively evaluated. In addition to that, the effect of the lumbar support adjuster was taken into consideration to predict the market evaluation more precisely.
Technical Paper

Seat Lateral Support Evaluation With SAE Manikin

2005-04-11
2005-01-1006
In this report, we proposed an objective evaluation method of the seat lateral support according to the mechanisms to create the performance differences that we reported previously [1]. First, we showed an effect of scrutinizing Seat Pressure Distribution's change during vehicle turn to gain a quantitative index for explaining subjective evaluation results. Second, we showed the examples of the differences of the results according to the subjects and selected the best-correlated subject among them with a market survey result. Then, we contrived a loading condition to SAE manikin to reproduce the subject's Seat Pressure Distribution. Final, by a specific calculation of the Seat Pressure Distribution, the method to indicate the performance rating that had strong correlation with market survey was clarified.
Technical Paper

Optimized Restraint Systems for Various-Sized Rear Seat Occupants in Frontal Crash

2003-03-03
2003-01-1230
Of the injuries sustained by belted rear occupants in a frontal collision event in Japan, the neck and the head are the regions of the body most likely to be injured, while children and female occupants are accounting for the highest rate of injuries. For the purpose of reducing rear seat occupant injuries, the occurrence mechanism of neck and head injuries is clarified by sled tests with the current rear seat belt system. When a high load is applied to the occupant via the seat belt, the occupant experiences sudden deceleration of the chest, resulting in a great relative velocity difference between the head and the chest. This causes injury to the occupant's neck and head. To reduce occupant injuries, therefore, it is important to minimize the relative velocity difference by control of belt load.
Technical Paper

Optimization of the Side Airbag System Using MADYMO Simulations

2007-04-16
2007-01-0345
Continuous improvement of side airbag safety performance is an important step because it is associated with many public domain tests and regulations. Thus, occupant restraint with a side airbag is critical and it is necessary to develop tools that can be utilized to help in design of side airbags. Though many papers on side impact safety have been published, only a few papers are related to MADYMO simulations of side airbags. This paper describes an improved injury prediction and optimization approach using a MADYMO model for side impact. This model consists of 3 parts: dummy, trim and airbag in FEM. In this study, a side impact with a ES-2, EuroSID-2, was simulated in MADYMO as follows: First, component tests were conducted for trim and airbag respectively to establish correlation. Second, these component models were then integrated into a MADYMO model, which has high correlation with a crash simulator that is capable of replicating physical vehicle tests.
Technical Paper

Introduction of Gear Noise Reduction Ring by Mechanism Analysis Including FEM Dynamic Tuning

2001-03-05
2001-01-0865
Reduction of transmission error by gear tooth profile optimization and tuning of gear resonance modes are known as effective methods for gear noise reduction. This paper concentrates on structuring a process for reducing gear noise using the latter method. The procedure comprises a study of gear noise mechanism from transmission error to radiation noise, an application of Steyer's method in gear frequency analysis and implementation of an invented device called “noise reduction ring”. This inexpensive and practical ring reduces gear noise drastically by 10dB, which is predicted by the simulation and verified by the experiment.
Technical Paper

Evaluation of Aerodynamic Noise Generated in Production Vehicle Using Experiment and Numerical Simulation

2003-03-03
2003-01-1314
Aerodynamic noise generated in production vehicle has been evaluated using experiment and numerical simulation. Finite difference method (FDM) and finite element method (FEM) are applied to analyze the flow field, and Lighthill's analogy is employed to conduct acoustic analysis. The flow fields around front-pillar obtained by numerical simulations agree with those by experiment for two cases with different front-pillar shape. Moreover, the distribution of acoustic source predicted by FEM is consistent with that obtained by experiment. Present study ascertained the feasibility and applicability of FEM with SGS model towards prediction of aerodynamic noise generated in production vehicle.
Technical Paper

Evaluation and Analysis of Strength of All-Ceramic Swirl Chamber for Diesel Engines

1800-01-01
871205
An all-ceramic swirl chamber has been developed and analyses and evaluations concerning the strength of silicon nitride ceramic (Si3N4) have been performed with a view to using it for the entire internal wall surface of the swirl chamber. The strength characteristics of Si3N4 and their effect and variation have been determined. On the basis of measurements and analyses of thermal stresses, assembling stresses, etc., investigation of the most suitable construction and assembling methods to reduce load stresses on ceramic, and various kinds of duration tests, the swirl chamber has been confirmed to have the required durability. This engine was found to comply with the 1987 U.S. diesel particulate regulation.
Technical Paper

Effect of subframe structure on compatibility performance

2003-10-27
2003-01-2748
With an aim to improve compatibility performance, vehicle-to-vehicle frontal impact simulations have been conducted between large car and small car. Focusing on sub-frame structure that disperses applied force with multiple load paths, a large saloon car with sub-frame was selected and three different front structures were studied: original, forward-extended sub-frame, and original with 25%-stiffness reduced structures. The types of collision contained four different crash modes in a combination of lateral overlap rate difference and side member height difference. As a result, it was found that the front structure with forward-extended sub-frame improved aggressivity by preventing override effect through structural interaction enhancement. Height of Force (HOF) was also improved.
Technical Paper

Driver Behavior Under a Collision Warning System - A Driving Simulator Study

1997-02-24
970279
Collision warning systems are expected to be an effective countermeasure to reduce traffic accidents; however there have been relatively few studies on the effects of such warning systems on the driver's collision avoidance behavior. In this study, a driving simulator which had a large motion system was used, and 45 subjects experienced crash imminent situations in which the preceding cars suddenly decelerated while the subject looked off the road. Analyzing the subjects' collision avoidance behaviors, it was found that the braking response time and the number of simulated collisions were substantially decreased with collision warnings. Furthermore, potential reduction of rear-end collisions on the road was estimated by modeling the driver's braking response.
Technical Paper

Development of a Low Pumping Loss Rotary Engine with a New Port Mechanism

1989-08-01
891677
The thermal efficiency of a three-rotor rotary engine (RE) was improved by a reduction in the pumping losses. These pumping losses were reduced by using a new port mechanism. The port mechanism utilized was an indirect recirculation type of late intake port closing. It was equipped with a recirculation chamber outside of the housings. This chamber interconnected the recirculation ports within each housing. This port mechanism yielded three main benefits 1. A Considerable reduction in the pumping losses. 2. A uniformly distributed air-fuel mixture in each housing. 3. A limited amount of residual gas in the housing. This residual gas was under specific pulsations by the recirculation chamber thus preventing deterioration in combustion under light loads. The above phenomena were clarified by experiments and simulations. The possibility of a reduction in exhaust emissions was also investigated.
Technical Paper

Development of Shape Fixing Press Forming Technology for High Strength Steel Sheet

2003-10-27
2003-01-2825
New press forming method was developed for ensuring shape-accuracy of draw parts with high strength steel sheet(HSS) of very high tensile strength such as 780MPa. In the new method, step drawing method was combined with crash forming method by applying cam flange die structure to drawing dies. Furthermore, the die structure in the method is simple. At the trial press-forming by the model die even with 780MPa high strength steel sheets, the side wall warps in particular were restrained within a specified tolerance, that is ±0.00067[1/mm] of the variation of curvature(Δ 1/ ρ). Now the method is applied to press-forming some automotive body parts, such as front side member, etc.
Technical Paper

Development of Non-equilibrium Plasma and Combustion Integrated Model for Reaction Analysis

2019-12-19
2019-01-2349
Control of self-ignition timing in a HCCI engine is still a major technical issue. Recently, the application of a non-equilibrium plasma using repetitively discharge has been proposed as the promising technology. However, non-equilibrium plasma reaction in higher hydrocarbon fuel mixture is very complicated. Hence, there have been few calculation reports considering a series of reactions from non-equilibrium plasma production to high temperature oxidation process. In this study, 0-dimensional numerical simulation model was developed in which both reactions of plasma chemistry and high temperature oxidation combustion was taken into account simultaneously. In addition, an ODEs solver has been applied for the reduction of calculation time in the simulation. By comparing calculation results with experiment such as self-ignition timing, the validity of the developed numerical model has been evaluated.
Technical Paper

Development of Module Carriers by Injection Molding with Long Glass-Fiber Reinforced Polypropylene

2003-03-03
2003-01-0791
We have developed injection molding technologies consist of a new high-strength long-glass fiber reinforced polypropylene (PPLGF). They are key technologies of new modular design for substantial reductions of weight and cost, offering integrated functionality. The strength of injection molded parts are three times stronger than that of the conventional material. This technology makes it possible to replace parts from steel stamping and press molded glass-mat reinforced polypropylene. The front end and door modules of Mazda 6 employ the module carriers using this material, resulting in dramatic weight and cost savings.
Technical Paper

Development of Integrated Functions Module Carriers by Injection Molding with Long Glass Fiber Reinforced Polypropylene

2003-10-27
2003-01-2810
We have developed injection molding technologies consist of a new high-strength long-glass fiber reinforced polypropylene (PPLGF). They are key technologies of new modular design for substantial reductions of weight and cost, offering integrated functionality. The strength of injection molded parts are three times stronger than that of the conventional material. This technology makes it possible to replace parts from steel stamping and press molded glass-mat reinforced polypropylene. The front end and door modules of Atenza / Mazda6, Demio / Mazda2, RX-8 employs the module carriers using this material, resulting in dramatic weight and cost savings. (Fig. 1)
X