Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Engine Aftertreatment System Simulation (VEASS) Model: Application to a Controls Design Strategy for Active Regeneration of a Catalyzed Particulate Filter

2005-04-11
2005-01-0970
Heavy-duty diesel engine particulate matter (PM) emissions must be reduced from 0.1 to 0.01 grams per brake horsepower-hour by 2007 due to EPA regulations [1]. A catalyzed particulate filter (CPF) is used to capture PM in the exhaust stream, but as PM accumulates in the CPF, exhaust flow is restricted resulting in reduced horsepower and increased fuel consumption. PM must therefore be burned off, referred to as CPF regeneration. Unfortunately, nominal exhaust temperatures are not always high enough to cause stable self-regeneration when needed. One promising method for active CPF regeneration is to inject fuel into the exhaust stream upstream of an oxidation catalytic converter (OCC). The chemical energy released during the oxidation of the fuel in the OCC raises the exhaust temperature and allows regeneration.
Technical Paper

Utilization of Vehicle Connectivity for Improved Energy Consumption of a Speed Harmonized Cohort of Vehicles

2020-04-14
2020-01-0587
Improving vehicle response through advanced knowledge of traffic behavior can lead to large improvements in energy consumption for the single isolated vehicle. This energy savings across multiple vehicles can even be larger if they travel together as a cohort in harmonization. Additionally, if the vehicles have enough information about their immediate path of travel, and other vehicles’ in that path (and their respective critical forward-looking information), they can safely drive close enough to each other to share aerodynamic load. These energy savings can be upwards of multiple percentage points, and are dependent on several criteria. This analysis looks at criteria that contributes to energy savings for a cohort of vehicles in synchronous motion, as well as describes a study that allows for better understanding of the potential benefits of different types of cohorted vehicles in different platoon arrangements.
Technical Paper

Using a DNS Framework to Test a Splashed Mass Sub-Model for Lagrangian Spray Simulations

2018-04-03
2018-01-0297
Numerical modeling of fuel injection in internal combustion engines in a Lagrangian framework requires the use of a spray-wall interaction sub-model to correctly assess the effects associated with spray impingement. The spray impingement dynamics may influence the air-fuel mixing and result in increased hydrocarbon and particulate matter emissions. One component of a spray-wall interaction model is the splashed mass fraction, i.e. the amount of mass that is ejected upon impingement. Many existing models are based on relatively large droplets (mm size), while diesel and gasoline sprays are expected to be of micron size before splashing under high pressure conditions. It is challenging to experimentally distinguish pre- from post-impinged spray droplets, leading to difficulty in model validation.
Journal Article

Unstructured with a Point: Validation and Robustness Evaluation of Point-Cloud Based Path Planning

2021-04-06
2021-01-0251
Robust autonomous navigation in unstructured environments is an unsolved problem and critical to the operation of autonomous military and rescue ground vehicles. Two-dimensional path planners operating on occupancy grids or costs maps can produce infeasible paths when the operational area includes complex terrain. Recently, sample-based path planners that plan on LiDAR-acquired point-cloud maps have been proposed. These approaches require no discretization of the operational area and provide direct pose estimation by modeling vehicle and terrain interaction. In this paper, we show that direct sample-based path planning on point clouds is effective and robust in unstructured environments. Robustness is demonstrated by completing a system parameter sensitivity analysis of the system in an Unreal simulation environment and partnered with field validation.
Technical Paper

Understanding the Kalman/Vold-Kalman Order Tracking Filters' Formulation and Behavior

2007-05-15
2007-01-2221
The Kalman and Vold-Kalman order tracking filters have been implemented in commercial software since the early 90's. There are several mathematical formulations of filters that have been implemented by different software vendors. However, there have not been any papers that have been published which sufficiently explain the math behind these filters and discuss the actual implementations of the filters in software. In addition, upon generating the equations represented by these filters, solving the equations for datasets in excess of several hundred thousand datapoints is not trivial and has not been discussed in the literature. The papers which have attempted to cover these topics are generally vague and overly mathematically eloquent but not easily understandable by a practicing engineer.
Technical Paper

Transient Fuel X-Tau Parameter Estimation Using Short Time Fourier Transform

2008-04-14
2008-01-1305
This paper presents a Short Time Fourier Transform based algorithm to identify unknown parameters in fuel dynamics system during engine cold start and warm-up. A first order system is used to model the fuel dynamics in a port fuel injection engine. The feed forward transient fuel compensation controller is designed based on the identified model. Experiments are designed and implemented to verify the proposed algorithm. Different experiment settings are compared.
Technical Paper

The Utilization of Onboard Sensor Measurements for Estimating Driveline Damping

2019-06-05
2019-01-1529
The proliferation of small silicon micro-chips has led to a large assortment of low-cost transducers for data acquisition. Production vehicles on average exploit more than 60 on board sensors, and that number is projected to increase beyond 200 per vehicle by 2020. Such a large increase in sensors is leading the fourth industrial revolution of connectivity and autonomy. One major downfall to installing many sensors is compromises in their accuracy and processing power due to cost limitations for high volume production. The same common errors in data acquisition such as sampling, quantization, and multiplexing on the CAN bus must be accounted for when utilizing an entire array of vehicle sensors. A huge advantage of onboard sensors is the ability to calculate vehicle parameters during a daily drive cycle to update ECU calibration factors in real time. One such parameter is driveline damping, which changes with gear state and drive mode. A damping value is desired for every gear state.
Journal Article

The Model Integration and Hardware-in-the-Loop (HiL) Simulation Design for the Analysis of a Power-Split Hybrid Electric Vehicle with Electrochemical Battery Model

2017-03-28
2017-01-0001
This paper studies the hardware-in-the-loop (HiL) design of a power-split hybrid electric vehicle (HEV) for the research of HEV lithiumion battery aging. In this paper, an electrochemical model of a lithium-ion battery pack with the characteristics of battery aging is built and integrated into the vehicle model of Autonomie® software from Argonne National Laboratory. The vehicle model, together with the electrochemical battery model, is designed to run in a dSPACE real-time simulator while the powertrain power distribution is managed by a dSPACE MicroAutoBoxII hardware controller. The control interface is designed using dSPACE ControlDesk to monitor the real-time simulation results. The HiL simulation results with the performance of vehicle dynamics and the thermal aging of the battery are presented and analyzed.
Technical Paper

The Influence of Pneumatic Atomization on the Lean Limit and IMEP

1989-02-01
890431
Lean limit characteristics of a pneumatic port fuel injection system is compared to a conventional port fuel injection system. The lean limit was based on the measured peak pressure. Those cycles with peak pressures greater than 105 % of the peak pressure for a nonfiring cycle were counted. Experimental data suggests that there are differences in lean limit characteristics between the two systems studied, indicating that fuel preparation processes in these systems influence the lean limit behaviors. Lean limits are generally richer for pneumatic fuel injection than those for conventional fuel injection. At richer fuel-to-air ratios the pneumatic injector usually resulted in higher torques. A simple model to estimate the evaporation occurring in the inlet manifold provided an explanation for the observed data.
Technical Paper

The Design and Testing of a Computer-Controlled Cooling System for a Diesel-Powered Truck

1984-11-01
841712
The hardware and software for a prototype computer controlled cooling system for a diesel powered truck has been designed and tested. The basic requirements for this system have been defined and the control functions, previously investigated in a study using the computer simulation model, were incorporated into the software. Engine dynamometer tests on the MACK-676 engine, comparing the conventional cooling system and the computer controlled system, showed the following advantages of the computer controlled system: 1. The temperature level to which the engine warms up to at low ambient temperature, was increased. 2. The faster shutter response reduced the temperature peaks and decreased total fan activity time. 3. The faster fan response reduces fan engagement time which should improve truck fuel economy.
Technical Paper

Target Based Rapid Prototyping Control System for Engine Research

2006-04-03
2006-01-0860
Today's advanced technology engines have a high content of electronic actuation requiring sophisticated real-time embedded software sensing and control. To enable research on such engines, a system with a flexible engine control unit (ECU) that can be rapidly configured and programmed is desired. Such a system is being used in the Advanced Internal Combustion Engine (AICE) Laboratories at Michigan Tech University (MTU) for research on a multi-cylinder spark-ignited gasoline, a high pressure common rail diesel and a single cylinder alternative fuels research engine. The system combines a production ECU with a software development system utilizing Mathworks Simulink/Stateflow © modeling tools. The interface in the Simulink modeling environment includes a library of modeling and interface blocks to the production Operating System (OS), Low Level Drivers (LLD) and CAN-based calibration tool.
Technical Paper

Summary and Characteristics of Rotating Machinery Digital Signal Processing Methods

1999-09-14
1999-01-2818
Several very different order tracking and analysis techniques for rotating equipment have been developed recently that are available in commercial noise and vibrations software packages. Each of these order tracking methods has distinct trade-offs for many common applications and very specific advantages for special applications in sound quality or noise and vibrations troubleshooting. The Kalman, Vold-Kalman, Computed Order Tracking, and the Time Variant Discrete Fourier Transform as well as common FFT based order analysis methods will all be presented. The strengths and weaknesses of each of the methods will be presented as well as the highlights of their mathematical properties. This paper is intended to be an overview of currently available technology with all methods presented in a common format that allows easy comparison of their properties. Several analytical examples will be presented to thoroughly document each methods' behavior with different types of data.
Technical Paper

Studies on Simulation and Real Time Implementation of LQG Controller for Autonomous Navigation

2021-04-06
2021-01-0108
The advancement in embedded systems and positional accuracy with base station GPS modules created opportunity to develop high performance autonomous ground vehicles. However, the development of vehicle model and making accurate state estimations play vital role in reducing the cross track error. The present research focus on developing Linear Quadratic Gaussian (LQG) with Kalman estimator for autonomous ground vehicle to track various routes, that are made with the series of waypoints. The model developed in the LQG controller is a kinematic bicycle model, which mimics 1/5th scale truck. Further, the cubic spline fit has been used to connect the waypoints and generate the continuous desired/target path. The testing and implementation has been done at APS labs, MTU on the mentioned vehicle to study the performance of controller. Python has been used for simulations, controller coding and interfacing the sensors with controller.
Technical Paper

Statistical Models of RADAR and LIDAR Returns from Deer for Active Safety Systems

2016-04-05
2016-01-0113
Based on RADAR and LiDAR measurements of deer with RADAR and LiDAR in the Spring and Fall of 2014 [1], we report the best fit statistical models. The statistical models are each based on time-constrained measurement windows, termed test-points. Details of the collection method were presented at the SAE World Congress in 2015. Evaluation of the fitness of various statistical models to the measured data show that the LiDAR intensity of reflections from deer are best estimated by the extreme value distribution, while the RCS is best estimated by the log-normal distribution. The value of the normalized intensity of the LiDAR ranges from 0.3 to 1.0, with an expected value near 0.7. The radar cross-section (RCS) varies from -40 to +10 dBsm, with an expected value near -14 dBsm.
Technical Paper

Spray-Wall Dynamics of High-Pressure Impinging Combustion

2019-01-15
2019-01-0067
The fuel spray impingement on the piston head and/or chamber often occurs in compact IC engines. The impingement plays one of the key roles in combustion because it affects the air-fuel mixing process. In this study, the impinged combustion has been experimentally investigated to understand the mechanism and dynamics of flame-wall interaction. The experiments were performed in a constant volume combustion chamber over a wide range of ambient conditions. The ambient temperature was varied from 800 K to 1000 K and ambient gas oxygen was varied from 15% to 21%. Diesel fuel was injected with an injection pressure of 150 MPa into ambient gas at a density of 22.8 kg/m3. The natural luminosity technique was applied in the experiments to explore the impinged combustion process. High-speed images were taken using a high-speed camera from two different views (bottom and side). An in-house Matlab program was used to post-process the images.
Technical Paper

Spray Characterization in a DISI Engine During Cold Start: (1) Imaging Investigation

2006-04-03
2006-01-1004
Spray angle and penetration length data were taken under cold start conditions for a Direct Injection Spark Ignition engine to investigate the effect of transient conditions on spray development. The results show that during cold start, spray development depends primarily on fuel pressure, followed by Manifold Absolute Pressure (MAP). Injection frequency had little effect on spray development. The spray for this single hole, pressure-swirl fuel injector was characterized using high speed imaging. The fuel spray was characterized by three different regimes. Regime 1 comprised fuel pressures from 6 - 13 bar, MAPs from 0.7 - 1 bar, and was characterized by a large pre-spray along with large drop sizes. The spray angle and penetration lengths were comparatively small. Regime 2 comprised fuel pressures from 30 - 39 bar and MAPs from 0.51 - 0.54 bar. A large pre-spray and large drop sizes were still present but reduced compared to Regime 1.
Technical Paper

Solutions to the Clean Snowmobile Challenge - What Works?

2005-10-24
2005-01-3681
The Society of Automotive Engineers' (SAE) Clean Snowmobile Challenge 2004 (CSC 2004) was held at Michigan Technological University in Houghton, Michigan, from March 15 - 20, 2004. The Clean Snowmobile Challenge has been a competition in the SAE Collegiate Design Series since 2000, and began in Jackson Hole, Wyoming, as a response to rising concerns about snowmobiling in environmentally-sensitive areas. Teams from fifteen universities competed in CSC 2004. The winning snowmobile (sled) was developed by the University of Wisconsin, Madison, and featured a four-stroke engine with electronic fuel injection (EFI), a two-stage tuned muffler, and catalytic exhaust aftertreatment. A hybrid-electric design was used to increase the snowmobile's powertrain output and improve acceleration. [8] Teams should be competitive in all events to gain enough points to win the competition.
Technical Paper

Simulation of Non-Evaporating Diesel Sprays and Verification with Experimental Data

2002-03-04
2002-01-0946
Non-evaporating diesel sprays have been simulated utilizing the ETAB and the WAVE atomization and breakup models and have been compared with experimental data. The experimental penetrations and widths were determined from back-lit spray images and the droplet sizes have been measured by means of a Malvern particle sizer. The model evaluation criteria include the spray penetration, the spray width and the local droplet size. The comparisons have been performed for variations of the injection pressure, the gas density and the fuel viscosity. The fuel nozzle exit velocities used in the simulations have been computed with a special code that considers the effect of in-nozzle cavitation. The simulations showed good overall agreement with experimental data. However, the capabilities of the models to predict the droplet size for different fuels could be improved.
Technical Paper

Simulation of Lithium Ion HEV Battery Aging Using Electrochemical Battery Model under Different Ambient Temperature Conditions

2015-04-14
2015-01-1198
This paper investigates the aging performance of the lithium ion cobalt oxide battery pack of a single shaft parallel hybrid electric vehicle (HEV) under different ambient temperatures. Varying ambient temperature of HEVs results in different battery temperature and then leads to different aging performance of the battery pack. Battery aging is reflected in the increasing of battery internal resistance and the decreasing of battery capacity. In this paper, a single shaft parallel hybrid electric vehicle model is built by integrating Automotive Simulation Model (ASM) from dSPACE and AutoLion-ST battery model from ECPower to realize the co-simulation of HEV powertrain in the common MATLAB/Simulink platform. The battery model is a physics-based and thermally-coupled battery (TCB) model, which enables the investigation of battery capacity degradation and aging. Standard driving cycle with differing ambient temperatures is tested using developed HEV model.
Technical Paper

Sensor Fusion Approach for Dynamic Torque Estimation with Low Cost Sensors for Boosted 4-Cylinder Engine

2021-04-06
2021-01-0418
As the world searches for ways to reduce humanity’s impact on the environment, the automotive industry looks to extend the viable use of the gasoline engine by improving efficiency. One way to improve engine efficiency is through more effective control. Torque-based control is critical in modern cars and trucks for traction control, stability control, advanced driver assistance systems, and autonomous vehicle systems. Closed loop torque-based engine control systems require feedback signal(s); indicated mean effective pressure (IMEP) is a useful signal but is costly to measure directly with in-cylinder pressure sensors. Previous work has been done in torque and IMEP estimation using crankshaft acceleration and ion sensors, but these systems lack accuracy in some operating ranges and the ability to estimate cycle-cycle variation.
X