Refine Your Search

Topic

Search Results

Technical Paper

Using a DNS Framework to Test a Splashed Mass Sub-Model for Lagrangian Spray Simulations

2018-04-03
2018-01-0297
Numerical modeling of fuel injection in internal combustion engines in a Lagrangian framework requires the use of a spray-wall interaction sub-model to correctly assess the effects associated with spray impingement. The spray impingement dynamics may influence the air-fuel mixing and result in increased hydrocarbon and particulate matter emissions. One component of a spray-wall interaction model is the splashed mass fraction, i.e. the amount of mass that is ejected upon impingement. Many existing models are based on relatively large droplets (mm size), while diesel and gasoline sprays are expected to be of micron size before splashing under high pressure conditions. It is challenging to experimentally distinguish pre- from post-impinged spray droplets, leading to difficulty in model validation.
Journal Article

The Impact of Spark Discharge Pattern on Flame Initiation in a Turbulent Lean and Dilute Mixture in a Pressurized Combustion Vessel

2013-04-08
2013-01-1627
An operational scheme with fuel-lean and exhaust gas dilution in spark-ignited engines increases thermal efficiency and decreases NOx emission, while these operations inherently induce combustion instability and thus large cycle-to-cycle variation in engine. In order to stabilize combustion variations, the development of an advanced ignition system is becoming critical. To quantify the impact of spark-ignition discharge, ignitability tests were conducted in an optically accessible combustion vessel to characterize the flame kernel development of lean methane-air mixture with CO₂ simulating exhaust diluent. A shrouded fan was used to generate turbulence in the vicinity of J-gap spark plug and a Variable Output Ignition System (VOIS) capable of producing a varied set of spark discharge patterns was developed and used as an ignition source. The main feature of the VOIS is to vary the secondary current during glow discharge including naturally decaying and truncated with multiple strikes.
Technical Paper

Spray-Wall Dynamics of High-Pressure Impinging Combustion

2019-01-15
2019-01-0067
The fuel spray impingement on the piston head and/or chamber often occurs in compact IC engines. The impingement plays one of the key roles in combustion because it affects the air-fuel mixing process. In this study, the impinged combustion has been experimentally investigated to understand the mechanism and dynamics of flame-wall interaction. The experiments were performed in a constant volume combustion chamber over a wide range of ambient conditions. The ambient temperature was varied from 800 K to 1000 K and ambient gas oxygen was varied from 15% to 21%. Diesel fuel was injected with an injection pressure of 150 MPa into ambient gas at a density of 22.8 kg/m3. The natural luminosity technique was applied in the experiments to explore the impinged combustion process. High-speed images were taken using a high-speed camera from two different views (bottom and side). An in-house Matlab program was used to post-process the images.
Technical Paper

Splashing Criterion and Topological Features of a Single Droplet Impinging on the Flat Plate

2018-04-03
2018-01-0289
This paper aims to provide the experimental and numerical investigation of a single fuel droplet impingement on the different wall conditions to understand the detailed impinging dynamic process. The experimental work was carried out at the room temperature and pressure except for the variation of the impinged wall temperature. A high-speed camera was employed to capture the silhouette of the droplet impinging on wall process against a collimated light. Water, diesel, n-dodecane, and n-heptane were considered as four different droplets and injected from a precision syringe pump with the volume flow rate of 0.2 mL/min at various impact Weber numbers. The impingement outcomes after droplet impacting on the wall include stick, spread, rebound and splash, which depend on the controlling parameters of Weber number, Reynolds number, liquid and surface properties, etc.
Technical Paper

Schlieren and Mie Scattering Visualization for Single-Hole Diesel Injector under Vaporizing Conditions with Numerical Validation

2014-04-01
2014-01-1406
This paper reports an experimental and numerical investigation on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel spray under engine-like conditions. The high pressure diesel spray was investigated in an optically-accessible constant volume combustion vessel for studying the influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio). Measurements were carried out by a high-speed imaging system capable of acquiring Mie-scattering and schlieren in a nearly simultaneous fashion mode using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies were performed at three injection pressures (70, 120, and 180 MPa), 23.9 kg/m3 ambient gas density, and 900 K gas temperature in the vessel.
Technical Paper

Numerical Study on Evaporation of Spherical Droplets Impinging on the Wall Using Volume of Fluid (VOF) Model

2017-03-28
2017-01-0852
This paper aims to extend the existing Volume of Fluid (VOF) model by implementing an evaporation sub-model in an open source Computational Fluid Dynamics (CFD) software, OpenFOAM. The paper applies the new model to numerically study the evaporation of spherical n-heptane droplets impinging on a hot wall at atmospheric pressure and a temperature above the Leidenfrost temperature. Volume of Fluid (VOF) method is chosen to track the liquid gas interface and the capability of VOF method implemented in interDyMFoam solver of OpenFOAM to simulate hydrodynamics during droplet-droplet interaction and droplet-film interaction is explored. Firstly, the in-built solver is used to simulate problems in isothermal conditions and the simulation results are compared qualitatively with the published results to validate the solver. A numerical method for modeling heat and mass transfer during evaporation is implemented in conjunction with the VOF.
Technical Paper

Numerical Study on Emission Characteristics of High-Pressure Dimethyl Ether (DME) under Different Engine Ambient Conditions

2013-04-08
2013-01-0319
Particular matter (PM) has been greatly concerned over the recent decades due to the constantly increasing restriction on its effect on environmental aspect. Oxygenated fuel such as dimethyl ether (DME) has been known to have beneficial impact on diesel engine emissions in terms of zero soot formation. In current study, under several ambient conditions including surrounding gas temperature and oxygen percentages, soot and emission formation of DME spray is investigated to provide a comparison with other diesel surrogate (n-heptane) and JP-8 surrogate fuels. One important work is to develop a number of chemical kinetic mechanisms with soot chemistry including the growth of polycyclic aromatic hydrocarbon (PAH) and nitro oxides (NOx) formation. Using the developing detailed mechanisms, several numerical approaches were introduced to provide an integrated picture of emission formations.
Technical Paper

Numerical Investigation of Spark Ignition Events in Lean and Dilute Methane/Air Mixtures Using a Detailed Energy Deposition Model

2016-04-05
2016-01-0609
It is beneficial but challenging to operate spark-ignition engines under highly lean and dilute conditions. The unstable ignition behavior can result in downgraded combustion performance in engine cylinders. Numerical approach is serving as a promising tool to identify the ignition requirements by providing insight into the complex physical/chemical phenomena. An effort to simulate the early stage of flame kernel initiation in lean and dilute fuel/air mixture has been made and discussed in this paper. The simulations are set to validate against laboratory results of spark ignition behavior in a constant volume combustion vessel. In order to present a practical as well as comprehensive ignition model, the simulations are performed by taking into consideration the discharge circuit analysis, the detailed reaction mechanism, and local heat transfer between the flame kernel and spark plug.
Technical Paper

Modeling Ignition and Premixed Combustion Including Flame Stretch Effects

2017-03-28
2017-01-0553
Objective of this work is the incorporation of the flame stretch effects in an Eulerian-Lagrangian model for premixed SI combustion in order to describe ignition and flame propagation under highly inhomogeneous flow conditions. To this end, effects of energy transfer from electrical circuit and turbulent flame propagation were fully decoupled. The first ones are taken into account by Lagrangian particles whose main purpose is to generate an initial burned field in the computational domain. Turbulent flame development is instead considered only in the Eulerian gas phase for a better description of the local flow effects. To improve the model predictive capabilities, flame stretch effects were introduced in the turbulent combustion model by using formulations coming from the asymptotic theory and recently verified by means of DNS studies. Experiments carried out at Michigan Tech University in a pressurized, constant-volume vessel were used to validate the proposed approach.
Technical Paper

Measurement of Hydrogen Jet Equivalence Ratio using Laser Induced Breakdown Spectroscopy

2024-04-09
2024-01-2623
Hydrogen exhibits the notable attribute of lacking carbon dioxide emissions when used in internal combustion engines. Nevertheless, hydrogen has a very low energy density per unit volume, along with large emissions of nitrogen oxides and the potential for backfire. Thus, stratified charge combustion (SCC) is used to reduce nitrogen oxides and increase engine efficiency. Although SCC has the capacity to expand the lean limit, the stability of combustion is influenced by the mixture formation time (MFT), which determines the equivalence ratio. Therefore, quantifying the equivalence ratio under different MFT is critical since it determines combustion characteristics. This study investigates the viability of using a Laser Induced Breakdown Spectroscopy (LIBS) for measuring the jet equivalence ratio. Furthermore, study was conducted to analyze the effect of MFT and the double injection parameter, namely the dwell time and split ratio, on the equivalence ratio.
Technical Paper

Measurement of Hydrogen Direct Injection Jet Equivalence Ratio under Elevated Ambient Pressure Condition

2023-04-11
2023-01-0332
Owing to climate change issues caused by global warming, the role of alternative fuels, such as low-carbon and non-carbon fuels, is becoming increasingly important, particularly in the transportation sector. Therefore, hydrogen has emerged as a promising fuel for internal combustion engines because it does not emit carbon dioxide. Direct injection is mandatory for hydrogen-based internal combustion engines to mitigate backfires and low energy density. However, there is a lack of measurement of the equivalence ratio methodology because hydrogen has a higher diffusion rate than conventional fuels. The objective of this research is a feasibility study of laser-induced breakdown spectroscopy (LIBs) for measuring the equivalence ratio. The second harmonic ND-YAG laser was implemented to induce the atomic emission of hydrogen via the breakdown phenomenon. Simultaneously, the hydrogen jet structure was visualized in a constant volume vessel using Schlieren imaging.
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Technical Paper

Investigation of Diesel Liquid Spray Penetration Fluctuations under Vaporizing Conditions

2012-04-16
2012-01-0455
Diesel combustion and emissions formation is largely spray and mixing controlled and hence understanding spray parameters, specifically vaporization, is key to determine the impact of fuel injector operation and nozzle design on combustion and emissions. In this study, an eight-hole common rail piezoelectric injector was tested in an optically accessible constant volume combustion vessel at charge gas conditions typical of full load boosted engine operation. Liquid penetration of the eight sprays was determined via processing of images acquired from Mie back scattering under vaporizing conditions by injecting into a charge gas at elevated temperature with 0% oxygen. Conditions investigated included a charge temperature sweep of 800 to 1300 K and injection pressure sweep of 1034 to 2000 bar at a constant charge density of 34.8 kg/m₃.
Technical Paper

Influence of the Nozzle Geometry of a Diesel Single-Hole Injector on Liquid and Vapor Phase Distributions at Engine-Like Conditions

2013-09-08
2013-24-0038
The paper describes an experimental activity on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel at engine-like conditions. The influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio) has been studied by spraying fuel in an optically-accessible constant-volume combustion vessel. A high-speed imaging system, capable of acquiring Mie-scattering and Schlieren images in a near simultaneous fashion mode along the same line of sight, has been developed at the Michigan Technological University using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies have been performed at three injection pressures (70, 120 and 180 MPa), 23.9 kg/m3 ambient gas density and 900 K gas temperature in the vessel.
Technical Paper

Impinged Diesel Spray Combustion Evaluation for Indirect Air-Fuel Mixing Processes and Its Comparison with Non-Vaporing Impinging Spray Under Diesel Engine Conditions

2019-04-02
2019-01-0267
Under low-temperature combustion for the high fuel efficiency and low emissions achievement, the fuel impingement often occurs in diesel engines with direct injection especially for a short distance between the injector and piston head/cylinder wall. Spray impingement plays an important role in the mixing-controlled combustion phase since it affects the air-fuel mixing rate through the disrupted event by the impingement. However, the degree of air entrainment into the spray is hard to be directly evaluated. Since the high spray expansion rate could allow more opportunity for fuel to mix with air, in this study, the expansion rate of impinged flame is quantified and compared with the spray expansion rate under non-vaporizing conditions. The experiments were conducted in a constant volume combustion chamber with an ambient density of 22.8 kg/m3 and the injection pressure of 150 MPa.
Technical Paper

High Pressure Impinging Spray Film Formation Characteristics

2018-04-03
2018-01-0312
Fuel film formed in the spray-piston or cylinder wall impingement plays a critical role in engine performance and emissions. In this paper, the fuel film formation and the relevant film characteristics resulting from the liquid spray impinging on a flat plate were investigated in a constant volume combustion vessel by Refractive Index Matching (RIM) technique. The liquid film thickness was firstly calibrated with two different proportional mixtures (5% n-dodecane and 95% n-heptane; 10% n-dodecane and 90% n-heptane by volume) pumped out from a precise syringe to achieve an accurate calibration. After calibration, n-heptane fuel from a side-mounted single-hole diesel injector was then injected on a roughened glass with the same optical setup. The ambient temperature and the plate temperature are set to 423 K with the fuel temperature of 363 K.
Technical Paper

HEUI Injector Modeling and ROI Experiments for High Injection Pressure of Diesel and Dimethyl Ether (DME)

2016-04-05
2016-01-0855
Dimethyl Ether (DME) is considered a clean alternative fuel to diesel due to its soot-free combustion characteristics and its capability to be produced from renewable energy sources rather than fossil fuels such as coal or petroleum. To mitigate the effect of strong wave dynamics on fuel supply lines caused due to the high compressibility of DME and to overcome its low lubricity, a hydraulically actuated electronic unit injector (HEUI) with pressure intensification was used. The study focuses on high pressure operation, up to 2000 bar, significantly higher than pressure ranges reported previously with DME. A one-dimensional HEUI injector model is built in MATLAB/SIMULINK graphical software environment, to predict the rate of injection (ROI) profile critical to spray and combustion characterization.
Technical Paper

Experimental and Numerical Study of Water Spray Injection at Engine-Relevant Conditions

2013-04-08
2013-01-0250
Water spray characterization of a multi-hole injector under pressures and temperatures representative of engine-relevant conditions was investigated for naturally aspirated and boosted engine conditions. Experiments were conducted in an optically accessible pressure vessel using a high-speed Schlieren imaging to visualize the transient water spray. The experimental conditions included a range of injection pressures of 34, 68, and 102 bar and ambient temperatures of 30 - 200°C, which includes flash-boiling and non-flash-boiling conditions. Transient spray tip penetration and spray angle were characterized via image processing of raw Schlieren images using Matlab code. The CONVERGE CFD software was used to simulate the water spray obtained experimentally in the vessel. CFD parameters were tuned and validated against the experimental results of spray profile and spray tip penetration measured in the combustion vessel (CV).
Technical Paper

Experimental and Numerical Study of Water Injection under Gasoline Direct Injection Engine Relevant Conditions

2023-04-11
2023-01-0313
Water injection has been used to reduce the charge temperature and mitigate knocking due to its higher latent heat of vaporization compared to gasoline fuel. When water is injected into the intake manifold or into the cylinder, it evaporates by absorbing heat energy from the surrounding and results in charge cooling. However, the effect of detailed evaporation process on the combustion characteristics under gasoline direct injection relevant conditions still needs to be investigated. Therefore, spray study was firstly conducted using a multi-hole injector by injecting pure water and water-methanol mixture into constant volume combustion chamber (CVCC) at naturally aspirated and boosted engine conditions. The target water-fuel ratio was fixed at 0.5. Mie-scattering and schlieren images of sprays were analyzed to study spray characteristics, and evaluate the amount of water vaporization.
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
X