Refine Your Search

Topic

Author

Search Results

Technical Paper

Ventilation Characteristics of Modeled Compact Car Part 3 Airflow Velocity Distribution with Foot Mode

2010-04-12
2010-01-1065
Following the previous reports, ventilation characteristics in automobile was investigated by using a half-scale car model which was created by the Society of Automotive Engineers of Japan (JSAE). In the present study, the ventilation mode of the cabin was foot mode which was the ventilation method for using in winter season. Supplied air was blown from the supply openings under the dashboard to the rear of the model via the driver's foot region in this mode. The experiment was performed in order to obtain accurate data about the airflow properties equipped with particle image velocimetry (PIV). Our experimental data is to be shared as a standard model to assess the environment within automobiles. The data is also for use in computational fluid dynamics (CFD) benchmark tests in the development of automobile air conditioning, which enables high accuracy prediction of the interior environment of automobiles.
Technical Paper

The Prediction of Refrigeration Cycle Performance with Front End Air Flow CFD Analysis of an Automotive Air Conditioner

2002-03-04
2002-01-0512
The purpose of this paper is to present a prediction method for the refrigerator performance of an automotive air conditioner (A/C). In order to predict the refrigerator performance in arbitrary situations, we consider the thermal equilibrium of the refrigeration cycle through A/C components, as the compressor, the evaporator and the condenser. These components are affected by the thermal property of the refrigerant. Influences of circumstantial flow and temperature field in the engine compartment also are reflected upon, because the cooling performance of the condenser is sensitive to that. In this paper, we try to derive algebraic models for the major components with regard to the thermal equilibrium in the refrigeration cycle. Furthermore, we use a Computational Fluid Dynamics analysis (CFD) for the prediction of cooling airflow temperature in the engine compartment, which is another essential factor in determining the state of the refrigeration cycle.
Technical Paper

The Aerodynamic Development of a Small Specialty Car

1994-03-01
940325
Aerodynamic drag reduction is one of the most important aspects of enhancing overall vehicle performance. Many car manufacturers have been working to establish drag reduction techniques. This paper describes the development process of a new small speciality car which achieved coefficient of drag(CD) of 0.25. A description of the test facilities and the systems used for developing the aerodynamic aspect of the car are also introduced briefly.
Technical Paper

The 1.5-Liter Vertical Vortex Engine

1992-02-01
920670
A stratified-charge lean-burn engine is newly developed for the purpose of energy saving and carbon dioxide reduction to minimize the global warming. The engine, named MVV(Mitsubishi Vertical Vortex)engine, is based on the unique vertical vortex technology which realizes stable combustion even with lean mixture without any additional device. And it also has another feature of “all range air-to-fuel ratio feedback control system” utilizing linear air-to-fuel ratio sensor. This paper describes various technologies developed in this engine.
Technical Paper

Technology for Meeting the 1994 USA Exhaust Emission Regulations on Heavy-Duty Diesel Engine

1993-10-01
932654
Recent global environmental problems which have come to light must be solved for ensuring the survival of the human race. And it is of the utmost importance that we give to our descendants a world full of nature and beauty. In the past years Mitsubishi Motors Corporation (MMC) has long been positive in research and the development activities so as to satisfy the demands for low emission and good fuel economy vehicles. (1) As one example of our research efforts, the technology that will meet the US '94 HDDE exhaust emission regulations, which is one of the most stringent regulations in the world, is described in this paper. The exhaust emissions were reduced by improvement of combustion, using the pre-stroke control type fuel injection pump and optimizing the combustion chamber shape. Efforts were also made to improve the oil consumption, in order to reduce PM (Particulate Matter) emission.
Technical Paper

Technology for Meeting the 1991 U.S.A. Exhaust Emission Regulations on Heavy Duty Diesel Engine

1990-10-01
902233
Protection of the Earth's environment by means of energy saving and cleaning up of air pollution on a global scale is one of the most important subjects in the world today. Because of this, the requirements for better fuel economy and cleaner exhaust emissions of internal combustion engines have been getting stronger, and, in particular, simultaneous reduction in nitrogen oxides (NOx) and particulate matter (PM) from heavy-duty diesel engines (HDDEs) without degrading fuel economy has become a major subject. Mitsubishi Motors Corporation (MM) has been selling diesel-powered heavy-duty trucks in the U.S. market since 1985 and has agressively carried out development work for meeting the 1991 model year exhaust emission standards.
Technical Paper

Technology for Low Emission, Combustion Noise and Fuel Consumption on Diesel Engine

1994-03-01
940672
In order to reduce exhaust emission and combustion noise and to improve fuel consumption, the effects of the combustion system parameters of a diesel engine, such as injection pressure, injection nozzle hole diameter, swirl ratio, and EGR rate on exhaust emissions, combustion noise and fuel consumption are investigated and described in detail by analyzing rate of heat release, needle valve lift and injection pressure. Based on these results, reduction of exhaust emission and combustion noise and improvement of fuel consumption are described in the latter part of this paper. These results are shown as follows. The smaller nozzle hole diameter is effective for reducing smoke and PM, and by optimizing the injection timing and swirl ratio, NOx can also be reduced. In addition to the above, by applying EGR and higher injection pressure it is possible to improve the fuel consumption with the remaining low NOx and PM.
Technical Paper

Study on Practicality of Electric Vehicle “i-MiEV” under Severe Weather

2011-05-17
2011-39-7241
Mitsubishi Motors Corporation succeeded in mass production of the electric vehicle “i-MiEV” which features leading-edge technologies epitomized by lithium-ion battery. The EV was released into the Japanese market in July 2009 and the European market in January 2011. In order to be used all over the world, the EV has to be practical and durable even under severe weather of extremely cold or extremely hot regions. In this paper we report some results of the tests conducted under extremely cold weather as well as extremely hot weather. From the test results the validity of the vehicle control system and the practicality of the EV are verified.
Technical Paper

Soot and Valve Train Wear in Passenger Car Diesel Engines

1983-10-31
831757
The effect of the use of the EGR system on the lubrication of a passenger car diesel engine was investigated. The higher the EGR rate, the more soot in the oil. And the most detrimental effect was found in valve train wear. Some engine tests, including motoring tests, were carried out to investigate the contribution of soot to valve train wear. The mechanism of cam and rocker arm wear in used oils was studied by analyzing for elements on the lubricated metal surface and subsequently the mechanism was more thoroughly studied using the four-ball test. Soot seems to act as an abrasive on the anti-wear solid film formed by the oil on the metal surface and this film contains Ca, O, P and S. Some hardware modifications and oil formulations to reduce valve train wear are also discussed.
Technical Paper

Small Engine - Concept Emission Vehicles

1971-02-01
710296
Three Japanese automobile manufacturers-Mitsubishi Motors Corp., Nissan Motor Co., Ltd., and Toyo Kogyo Co., Ltd.-have been making efforts over the past three years to design and develop effective thermal reactor-exhaust gas recirculation and catalytic converter systems suitable for small engines. The work is being done by members participating in the IIEC (Inter-Industry Emission Control) Program, and the exhaust emission levels of the concept vehicles developed by these companies have met the goal established by the IIEC Program at low mileage. Each system, however, has a characteristic relationship between exhaust emission level and loss of fuel economy. Much investigation is required, particularly with respect to durability, before any system that will fully satisfy all service requirements can be completed. This paper reports the progress of research and development of the individual concept vehicles.
Technical Paper

Shape Study for a Low-Air Resistance Air Deflector - The Second Report

1995-02-01
950633
We reported, in our first report1), the study of shapes of air deflectors that have strong yawing angle characteristics for the air resistance encountered when vehicles are running at high speed, taking into account the ambient wind. However, it is rarely the case that the optimum shape of air deflector, which was obtained and reported in our first report, is directly adopted for practical use. This paper reports the results of measurement tests on how the air resistance increases (worsens) when an air deflector is mounted on the cab of a vehicle: in the case when the air deflector was slightly changed on the same vehicle; or when the parameters of the vehicle (the height of the rear body) were changed for the same air deflector. We obtained the following results: Considerations and adjustments are required not to allow flows passing over upper and side surfaces of the air deflector to hit the front surface of the rear body.
Technical Paper

Reduction of Spiral Bevel Gear Noise in 4-Wheel Drive Vehicle Transfer System

1992-09-01
922109
Mitsubishi Motors Corporation uses spiral bevel gears in the transfer system for 4-wheel drive passenger cars modified from the front wheel drive configuration. This transfer gear ratio is near 1:1, and gears have uniform depth teeth cutting by the continuous generating method of OERLIKON cutting machine. In this method, the cutter and the work rotations are timed together to accomplish continuous indexing and cutting in order to enable high productivity. In general, it is difficult to reduce the meshing noise of spiral bevel gears and control its quality. The authors established the tooth surface coordinates, to reduce the meshing noise, by studying the influence of tooth surface coordinates on the meshing transmission error (MTE).
Technical Paper

Reduction of Idling Rattle Noise in Trucks

1991-05-01
911044
Optimization of the clutch torsional characteristics is one of the effective methods to reduce the idling rattle noise. Many researches on th.s problem have been reported, but only few of them give sufficient consideration to the drag torque applied to the clutch disc during engine idling. This paper pays attention to the drag torque and discusses the mechanism of idling rattle noise by using vehicle testing, bench test with rotating torsional exciter and computer simulation. Reauction of Idling
Technical Paper

Reduction of Exhaust Emission with New Water Injection System in a Diesel Engine

1996-02-01
960033
In this study a new water injection system was applied to an 11 liter naturally aspirated DI diesel engine in order to reduce exhaust emissions. In this system, the water and fuel were arranged in the injection nozzle during the time between injections as fuel, water and then fuel. The fuel and water were then injected into the cylinder in that order. The tests were conducted at several engine operating conditions from the Japanese 13 mode test cycle to clarify effects of water injection on exhaust emissions and fuel consumption. The results showed that NOx reduction was directly proportional to the relative amount of water injection, regardless of engine speed and load. By using the optimal relative amount of water injection at each engine operating condition, total NOx and particulate matter (PM) in the Japanese 13 mode test cycle were reduced by 50% and 25%, respectively, without a fuel consumption penalty.
Technical Paper

Prediction of Occupant's Thermal Sensation under the Transient Environment in a Vehicle Compartment

2001-03-05
2001-01-0586
New numerical simulation system and experimental evaluation system has been developed to predict and evaluate occupant's thermal sensation in a passenger compartment in which environment is not steady and not uniform. Transitional effective temperature, which is new index of thermal sensation, is proposed and verified to correspond with subjects' thermal sensation votes. The simulation system has two advantage beside the prediction of thermal sensation; automatic generation of a computational model and coupling analysis of temperature including an analysis of temperature distribution inside a cabin, refrigerating cycle, solar radiation, and so on. It was verified that this system well predicts occupant's thermal sensation in a short time.
Technical Paper

Powertrain Model Selection and Reduction for Real Time Control Algorithm Design and Verification in Rapid Controller Prototyping Environment

2010-04-12
2010-01-0236
New systems or functionalities have been rapidly introduced for fuel economy improvement. Active vibration suppression has also been introduced. Control algorithm is required to be verified in real time environment to develop controller functionality in a short term. Required frequency domain property concept is proposed for representation of target phenomena with reduced models. It is shown how to select or reduce engine, transmission and vehicle model based on the concept. Engine torque profile which has harmonics of engine rotation is required for engine start, take-off from stand still, noise & vibration suppression and misfire detection for OBD simulation. An engine model which generates torque profile synchronous to crank angle was introduced and modified for real time simulation environment where load changes dynamically. Selected models and control algorithms were modified for real time environment and implemented into two linked universal controllers.
Technical Paper

Passenger Car Engines for the 21st Century

1991-09-01
911908
During next decade, automotive engineers will take up unprecedented challenges to meet a variety of technical demands on passenger cars. While performance, refinement and reliability will continue to be major technical goals of passenger cars, reducing their impact on the environment not only in urban areas but also on the global basis will become an increasingly urgent issue. In addition, the need for energy and resources saving will necessitate development of more fuel efficient cars, exploitation of alternative energy and recycled materials. In this paper, the authors will review various alternative engines as candidates to satisfy the above demands. The authors will also discuss various alternative transportation energy sources such as alcoholic fuels, natural gas, hydrogen and electricity. Finally the trends of future passenger car engine design will be discussed.
Technical Paper

Optimized Gasoline Direct Injection Engine for the European Market

1998-02-23
980150
GDI (Gasoline Direct Injection) engine adopting new combustion control technologies was developed and introduced into Japanese domestic market in August of 1996. In order to extend its application to the European market, various system modifications have been performed. Injectors are located with a smaller angle to the vertical line in order to improve the combustion stability in the higher speed range. A new combustion control method named “two-stage mixing” is adopted to suppress the knock in the low speed range. As a result of this new method, the compression ratio was increased up to 12.5 to 1 while increasing the low-end torque significantly. Taking the high sulfur gasoline in the European market into account, a selective reduction lean-NOx catalyst with improved NOx conversion efficiency was employed. A warm-up catalyst can not be used because the selective reduction lean NOx catalyst requires HC for the NOx reduction.
Technical Paper

Optimization of In-Cylinder Flow and Mixing for a Center-Spark Four-Valve Engine Employing the Concept of Barrel-Stratification

1994-03-01
940986
Flow and flame structure visualization and modeling were performed to clarify the characteristics of bulk flow, turbulence and mixing in a four-valve engine to adopt the lean combustion concept named “Barrel-Stratification” to the larger displacement center-spark four-valve engine. It was found that the partitions provided in the intake port and the tumble-control piston with a curved-top configuration were effective to enhance the lean combustion of such an engine. By these methods, the fuel distribution in the intake port and the in-cylinder bulk flow structure are optimized, so that the relatively rich mixture zone is arranged around the spark plug. The tumble-control piston also contributes to optimize the flow field structure after the distortion of tumble and to enable stable lean combustion.
Technical Paper

Optimization of Catalytic Converter Location Achieved with a Curve Catalytic Honeycomb Substrate

1994-03-01
940743
A new type of catalytic converter has been developed for the coming TLEV (Transitional Low Emission Vehicle) standards. It is a “Front Curve Catalytic Converter (FCCC)” using a curved cordierite ceramic honeycomb substrate. During this development, an optimum location and volume of the front curve catalytic converter were determined from the view points of thermal deterioration of the catalyst and hydrocarbon conversion performance. Based on CAE (Computer Aided Engineering) analysis, the best curvature radius of the substrate was selected to minimize a pressure drop of the front curve catalytic converter. The emission conversion and light-off performances of the front curve catalytic converter were compared with a conventional straight design. A series of durability tests; hot vibration, engine dynamometer and vehicle fleet tests were also conducted to confirm the reliability of the new front curve catalytic converter.
X