Refine Your Search

Topic

Author

Search Results

Technical Paper

Updating the Tools Used to Estimate Space Radiation Exposures for Operations: Codes, Models, and Interfaces

2002-07-15
2002-01-2457
In order to estimate the exposure to a crew in space, there are three essential steps to be performed: first, the ambient radiation environment at the vehicle must be characterized; second, the mass distribution properties of the vehicle, including the crewmembers themselves must be developed, and third a model of the interactions of space radiations with matter must be employed in order to characterize the radiation field at the dose point of interest. The Space Radiation Analysis Group (SRAG) at the NASA, Johnson Space Center carries the primary responsibility for the operational radiation protection support function associated with manned space flight. In order to provide support during the various planning, execution, and analysis/recording phase activities associated with a given mission, tools have been developed to allow rapid, repeatable calculations of exposure on orbit.
Technical Paper

The Lunar-Mars Life Support Test Project Phase III 90-day Test: The Crew Perspective

1998-07-13
981702
The Lunar-Mars Life Support Test Project (LMLSTP) Phase III test examined the use of biological and physicochemical life support technologies for the recovery of potable water from waste water, the regeneration of breathable air, and the maintenance of a shirt-sleeve environment for a crew of four persons for 91 days. This represents the longest duration ground-test of life support systems with humans performed in the United States. This paper will describe the test from the inside viewpoint, concentrating on three major areas: maintenance and repair of life support elements, the scientific projects performed primarily in support of the International Space Station, and numerous activities in the areas of public affairs and education outreach.
Technical Paper

The Food System for the International Space Station: The First Five Increments

2003-07-07
2003-01-2426
The International Space Station (ISS) has been continuously crewed for more than 2 years. One of the major systems for crew health, performance and psychological support is the food system. This paper documents the mechanics of implementation for the ISS food system, with emphasis on the U.S. portion of that system, and also provides some performance feedback received from the first 5 increment crews. Menu composition and planning, food stowage, on orbit preparation, shipments, and inventory control are also described.
Technical Paper

Summary of Resources for the International Space Station Environmental Control and Life Support System for Core Complete Modules

2004-07-19
2004-01-2386
The Core Complete Environmental Control and Life Support (ECLS) system for the International Space Station (ISS) will consist of components and subsystems in both the United States (U.S.) and International Partner elements which together will perform the functions of Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Fire Detection and Suppression (FDS), and Vacuum System (VS) for the station. Due to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems, beginning with estimates during the hardware development phase through measured actuals when flight hardware is built and delivered. A summary of resources consumed by the current and by the addition of future U.S.
Technical Paper

Status of the Orion Environmental Control and Life Support Architecture

2008-06-29
2008-01-2085
In 2007, the architecture of the Orion Environmental Control and Life Support System went through a major reassessment driven by overall vehicle weight considerations. The changes were initiated with the challenge to switch from a two fault tolerant based configuration to one that is one fault tolerant. This paper describes this design evolution.
Technical Paper

Space Shuttle Launch Entry Suit Thermal Performance Evaluation

1993-07-01
932297
Comments of the Space Shuttle crew indicate that the Launch Entry Suit (LES) may provide inadequate cooling before launch and after reentry. During these periods some crewmembers experienced thermal discomfort induced by localized cabin heating, middeck experiments, and crewmembers' body heat and humidity. The NASA Johnson Space Center(JSC) Crew and Thermal System Division (CTSD) executed a two phase study, analysis and testing, to investigate this problem. The analysis phase used a computer model of the LES to study the transient heat dissipation and temperature response under the various Space Shuttle flight cabin environments. After the completion of the analysis, the testing phase was conducted to collect the engineering data in order to validate the analysis results. Due to the constraint of the test facility, the test was conducted on the air cooled techniques only. This paper presents the analytical model, its solution and an evaluation and summary of the test results.
Technical Paper

Sabatier CO2 Reduction System Design Status

2002-07-15
2002-01-2531
Carbon dioxide reduction in a closed loop life support system recovers water from otherwise waste carbon dioxide and hydrogen. Incorporation of a carbon dioxide reduction assembly (CRA) into the International Space Station life support system frees up thousands of pounds of payload capacity in the supporting Space Shuttle that would otherwise be required to transport water. Achievement of this water recovery goal requires coordination of the CRA design to work within the existing framework of the interface systems that are either already on orbit or well advanced in their development; namely, the Oxygen Generator Assembly (OGA), Carbon Dioxide Removal Assembly (CDRA) and Water Processor Assembly (WPA). The Oxygen Generation System (OGS) rack is in its final design phase and is scarred to accept later installation of the CRA.
Technical Paper

Requirements and Potential for Enhanced EVA Information Interfaces

2003-07-07
2003-01-2413
NASA has long recognized the advantages of providing improved information interfaces to EVA astronauts and has pursued this goal through a number of development programs over the past decade. None of these activities or parallel efforts in industry and academia has so far resulted in the development of an operational system to replace or augment the current extravehicular mobility unit (EMU) Display and Controls Module (DCM) display and cuff checklist. Recent advances in display, communications, and information processing technologies offer exciting new opportunities for EVA information interfaces that can better serve the needs of a variety of NASA missions. Hamilton Sundstrand Space Systems International (HSSSI) has been collaborating with Simon Fraser University and others on the NASA Haughton Mars Project and with researchers at the Massachusetts Institute of Technology (MIT), Boeing, and Symbol Technologies in investigating these possibilities.
Technical Paper

Project Orion, Environmental Control and Life Support System Integrated Studies

2008-06-29
2008-01-2086
Orion is the next vehicle for human space travel. Humans will be sustained in space by the Orion subystem, environmental control and life support (ECLS). The ECLS concept at the subsystem level is outlined by function and technology. In the past two years, the interface definition with other subsystems has increased through different integrated studies. The paper presents the key requirements and discusses three recent studies (e.g., unpressurized cargo) along with the respective impacts on the ECLS design moving forward.
Technical Paper

Performance Testing of a New Membrane Evaporator for the Thermoelectric Integrated Membrane Evaporator System (TIMES) Water Processor

2002-07-15
2002-01-2525
The TIMES system was evaluated to determine its ability to process reverse osmosis (RO) brine as one of the Advanced Water Processor steps. Since preliminary testing performed in 1998 showed that the membrane typically used in the process (Nafion 117) offered a very poor ammonia rejection, a search for an alternate membrane exhibiting high ammonia rejection capability was initiated under NASA-JSC funding. This investigation has resulted in the selection of a PolyVinylAlcohol (PVA) composite membrane as a replacement. When processing RO brine and untreated human urine as feeds, the Pervap 2201 membrane showed a 96% ammonia rejection over a large range of ammonia concentration. The water permeation rates in both laboratory-scale and pilot scale testings were also similar to the Nafion. The water permeance of the Pervap 2201 was approximately 7.5 kg/h/m2/atm (1.1 lb/h/m2/psi).
Technical Paper

Liquid Cooling Garment Adaptation to Enhance Surgical Outcomes

2003-07-07
2003-01-2339
Hypothermia is a well documented problem for surgical patients and is historically addressed by the use of a variety of warming aids and devices applied to the patient before, during, and after surgery. Their effectiveness is limited in many surgeries by practical constraints of surgical access, and hypothermia remains a significant concern. Increasing the temperature of the operating room has been proposed as an alternative solution. However, operating room temperatures must be cool enough to limit thermal stress on the surgical team despite the heat transport barriers imposed by protective sterile garments. Space technology in the form of the liquid cooling garment worn by EVA astronauts answers this need. Hamilton Sundstrand Space Systems International (HSSSI) has been working with Hartford Hospital to adapt liquid cooling garment technology for use by surgical teams in order to allow them to work comfortably in warmer operating room environments.
Technical Paper

Life Sciences Space Biology Project Planning

1988-07-01
881075
Life sciences research facilities planned for the U.S. Space Station will accommodate life sciences investigations addressing the influence of microgravity on living organisms. Current projects within the Life Sciences Space Station Program (LSSSP), the Life Sciences Space Biology (LSSB) and Extended Duration Crew Operations (EDCO) projects, will explore the physiological, clinical, and sociological implications of long duration space flight on humans and the influence of microgravity on other biological organisms/systems. Initially, the primary research will emphasize certifying man for routine 180-day stays on the Space Station. Operational crew rotations of 180 days or more will help reduce Space Station operational costs and minimize the number of Space Transportation System (STS) shuttle flights required to support Space Station.
Journal Article

Lessons Learned from the International Space Station (ISS) Environmental Control and Life Support System (ECLSS) Water Subsystem

2008-06-29
2008-01-2008
The International Space Station (ISS) has served as an excellent test bed for the implementation and integration of several life support systems, and has offered many lessons that can be applied to future vehicles and program. This paper focuses on those lessons learned within the Environmental Control and Life Support (ECLS) Water Subsystem, which have dictated on-orbit system performance and forced many operational controls. These include lessons on the need for precise documentation and testing, pros and cons of different types of storage containers, and the need for designing systems to have accessibility and flexibility. This paper describes the issues encountered on ISS and suggests solutions for future systems in the form of recommendations and questions posed to the future designers.
Technical Paper

Investigation of Extravehicular Activity Requirements and Techniques at an Arctic Mars Analog Field Science Base

2001-07-09
2001-01-2199
Designing an EVA system for Mars’s exploration will require a thorough understanding of the mission. Data are available from NASA mission studies, preliminary EVA requirements document, and Apollo program experience. However, additional relevant field experience is required to complete the picture. NASA has addressed this through field tests using prototype EVA equipment and field science programs like the Haughton Mars Project on Devon Island. There, a group of scientists conducts scientific exploration in and around an impact crater in a polar desert similar to expected exploration sites on Mars. Hamilton Sundstrand Space Systems Intl. (HSSSI) EVA system engineers participated in the summer 2000 field research program to gain firsthand knowledge of field science activities. By using a Mars EVA system mockup, they were also able to conduct experiments on EVA system impacts on field science tasks. This field experience and some of its results are described in this paper.
Technical Paper

International Space Station Waste Collector Subsystem Risk Mitigation Experiment Design Improvements

2002-07-15
2002-01-2304
The International Space Station Waste Collector Subsystem Risk Mitigation Experiment (ISS WCS RME) was flown as the primary (Shuttle) WCS on Space Shuttle flight STS-104 (ISS-7A) in July 2001, to validate new design enhancements. In general, the WCS is utilized for collecting, storing, and compacting fecal & associated personal hygiene waste, in a zero gravity environment. In addition, the WCS collects and transfers urine to the Shuttle waste storage tank. All functions are executed while controlling odors and providing crew comfort. The ISS WCS previously flew on three Shuttle flights as the Extended Duration Orbiter (EDO) WCS, as it was originally designed to support extended duration Space Shuttle flights up to 30 days in length. Soon after its third flight, the Space Shuttle Program decided to no longer require 30 day extended mission duration capability and provided the EDO WCS to the ISS Program.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2008 – 2009

2009-07-12
2009-01-2415
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2008 and February 2009. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2007 - 2008

2008-06-29
2008-01-2131
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2007 and February 2008. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2005 - 2006

2006-07-17
2006-01-2055
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2005 and February 2006. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
X