Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Value of Information for Comparing Dependent Repairable Assemblies and Systems

2018-04-03
2018-01-1103
This article presents an approach for comparing alternative repairable systems and calculating the value of information obtained by testing a specified number of such systems. More specifically, an approach is presented to determine the value of information that comes from field testing a specified number of systems in order to appropriately estimate the reliability metric associated with each of the respective repairable systems. Here the reliability of a repairable system will be measured by its failure rate. In support of the decision-making effort, the failure rate is translated into an expected utility based on a utility curve that represents the risk tolerance of the decision-maker. The algorithm calculates the change of the expected value of the decision with the sample size. The change in the value of the decision represents the value of information obtained from testing.
Technical Paper

Update On SLD Engineering Tools Development

2003-06-16
2003-01-2127
The airworthiness authorities (FAA, JAA, Transport Canada) will be releasing a draft rule in the 2006 timeframe concerning the operation of aircraft in a Supercooled Large Droplet (SLD) environment aloft. The draft rule will require aircraft manufacturers to demonstrate that their aircraft can operate safely in an SLD environment for a period of time to facilitate a safe exit from the condition. It is anticipated that aircraft manufacturers will require a capability to demonstrate compliance with this rule via experimental means (icing tunnels or tankers) and by analytical means (ice prediction codes). Since existing icing research facilities and analytical codes were not developed to account for SLD conditions, current engineering tools are not adequate to support compliance activities in SLD conditions. Therefore, existing capabilities need to be augmented to include SLD conditions.
Technical Paper

Total Temperature Measurements in Icing Cloud Flows Using a Rearward Facing Probe

2019-06-10
2019-01-1923
This paper reports on temperature and humidity measurements from a series of ice-crystal icing tunnel experiments conducted in June 2018 at the Propulsion Systems Laboratory at the NASA Glenn Research Center. The tests were fundamental in nature and were aimed at investigating the icing processes on a two-dimensional NACA0012 airfoil subjected to artificially generated icing clouds. Prior to the tests on the airfoil, a suite of instruments, including total temperature and humidity probes, were used to characterize the thermodynamic flow and icing cloud conditions of the facility. Two different total temperature probes were used in these tests which included a custom designed rearward facing probe and a commercial self-heating total temperature probe. The rearward facing probe, the main total temperature probe, is being designed to reduce and mitigate the contaminating effects of icing and ingestion of ice crystals and water droplets at the probe’s inlet.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

System Reliability-Based Design using a Single-Loop Method

2007-04-16
2007-01-0555
An efficient approach for series system reliability-based design optimization (RBDO) is presented. The key idea is to apportion optimally the system reliability among the failure modes by considering the target values of the failure probabilities of the modes as design variables. Critical failure modes that contribute the most to the overall system reliability are identified. This paper proposes a computationally efficient, system RBDO approach using a single-loop method where the searches for the optimum design and for the most probable failure points proceed simultaneously. Specifically, at each iteration the optimizer uses approximated most probable failure points from the previous iteration to search for the optimum. A second-order Ditlevsen upper bound is used for the joint failure probability of failure modes. Also, an easy to implement active strategy set is employed to improve algorithmic stability.
Technical Paper

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

2019-06-10
2019-01-2027
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results. The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida.
Technical Paper

Statistical Process Control and Analysis on the Water Content Measurements in NASA Glenn’s Icing Research Tunnel

2023-06-15
2023-01-1413
The Icing Research Tunnel at NASA Glenn follows the recommended practice for calibration outlined in SAE’s ARP5905. The calibration team has followed the schedule of a full calibration every five years with a check calibration done every six months following. The liquid water content of the IRT has maintained stability within the stated specifications of variation within +/- 10% of the curve fit equation generated from calibration data. Using past measurements and data trends, IRT characterization engineers wanted to develop methods for the ability to know when data were not within variation. Trends can be observed in the liquid water content measurement process by constructing statistical process control charts. This paper describes data processing procedures for the Multi-Element Sensor in the IRT, including collision efficiency corrections, canonical correlation analysis, process for rejection of data, and construction of control charts.
Technical Paper

Simulation of Ice Particle Breakup and Ingestion into the Honeywell Uncertified Research Engine (HURE)

2019-06-10
2019-01-1965
Numerical solutions have been generated which simulate flow inside an aircraft engine flying at altitude through an ice crystal cloud. The geometry used for this study is the Honeywell Uncertified Research Engine (HURE) which was recently tested in the NASA Propulsion Systems Laboratory (PSL) in January 2018. The simulations were carried out at predicted operating points with a potential risk of ice accretion. The extent of the simulation is from upstream of the engine inlet to downstream past the strut in the core and bypass. The flow solution is produced using GlennHT, a NASA in-house code. A mixing plane approximation is used upstream and downstream of the fan. The use of the mixing plane allows for steady state solutions in the relative frame. The flow solution is then passed on to LEWICE3D for particle trajectory, impact and breakup prediction. The LEWICE3D code also uses a mixing plane approximation at the boundaries upstream and downstream of the fan.
Technical Paper

Simulation Model Development for Icing Effects Flight Training

2002-04-16
2002-01-1527
A high-fidelity simulation model for icing effects flight training was developed from wind tunnel data for the DeHavilland DHC-6 Twin Otter aircraft. First, a flight model of the un-iced airplane was developed and then modifications were generated to model the icing conditions. The models were validated against data records from the NASA Twin Otter Icing Research flight test program with only minimal refinements being required. The goals of this program were to demonstrate the effectiveness of such a simulator for training pilots to recognize and recover from icing situations and to establish a process for modeling icing effects to be used for future training devices.
Technical Paper

Scalability of GlennICE in a Parallel Environment

2023-06-15
2023-01-1482
The Glenn Icing Computational Environment (GlennICE) is a computational tool designed to calculate ice growth on complex three-dimensional geometries using the input from a user-supplied computational fluid dynamics (CFD) solution for the geometry of interest. The most significant developments in the advancement of GlennICE have been investigating the convergence of the collection efficiency, efficiently finding trajectories, and improving the refinement methodology. Such developments have increased the efficiency of GlennICE for practical engineering application. With the increasing demand for applying GlennICE for more memory-intensive problems, the scalability of GlennICE has yet to be investigated. This paper is aimed at presenting a method to benchmark the scalability of GlennICE utilizing a relevant engineering problem within a parallel environment.
Technical Paper

Reliability Analysis of Composite Inflatable Space Structures Considering Fracture Failure

2014-04-01
2014-01-0715
Inflatable space structures can have lower launching cost and larger habitat volume than their conventional rigid counterparts. These structures are made of composite laminates, and they are flexible when folded and partially inflated. They contain light-activated resins, and can be cured with the sun light after being inflated in space. A spacecraft can burst due to cracks caused by meteor showers or debris. Therefore, it is critical to identify the important fracture failure modes, and assess their probability. This information will help a designer minimize the risk of failure and keep the mass and cost low. This paper presents a probabilistic approach for finding the required thickness of an inflatable habitat shell for a prescribed reliability level, and demonstrates the superiority of probabilistic design to its deterministic counterpart.
Technical Paper

Random Vibration Analysis Using Quasi-Random Bootstrapping

2018-04-03
2018-01-1104
Reliability analysis of engineering structures such as bridges, airplanes, and cars require calculation of small failure probabilities. These probabilities can be calculated using standard Monte Carlo simulation, but this method is impractical for most real-life systems because of its high computational cost. Many studies have focused on reducing the computational cost of a reliability assessment. These include bootstrapping, Separable Monte Carlo, Importance Sampling, and the Combined Approximations. The computational cost can also be reduced using an efficient method for deterministic analysis such as the mode superposition, mode acceleration, and the combined acceleration method. This paper presents and demonstrates a method that uses a combination of Sobol quasi-random sequences and bootstrapping to reduce the number of function calls. The study demonstrates that the use of quasi-random numbers in conjunction bootstrapping reduces dramatically computational cost.
Technical Paper

Predicted Ice Shape Formations on a Boundary Layer Ingesting Engine Inlet

2019-06-10
2019-01-2025
Computational ice shapes were generated on the boundary layer ingesting engine nacelle of the D8 Double Bubble aircraft. The computations were generated using LEWICE3D, a well-known CFD icing post processor. A 50-bin global drop diameter discretization was used to capture the collection efficiency due to the direct impingement of water onto the engine nacelle. These discrete results were superposed in a weighted fashion to generate six drop size distributions that span the Appendix C and O regimes. Due to the presence of upstream geometries, i.e. the fuselage nose, the trajectories of the water drops are highly complex. Since the ice shapes are significantly correlated with the collection efficiency, the upstream fuselage nose has a significant impact on the ice accretion on the engine nacelle. These complex trajectories are caused by the ballistic nature of the particles and are thus exacerbated as particle size increases.
Technical Paper

Optical Evaluation of a Refractive Secondary Concentrator

1999-08-02
1999-01-2679
Refractive secondary concentrators are being considered for solar thermal applications because of their ability to achieve maximum efficiency through the use of total internal reflection for the concentration and distribution of solar energy. A prototype refractive secondary concentrator was built based on ray tracing analysis to demonstrate this collection and distribution concept. The design included a conical secondary concentrator and a faceted extractor. The objective of this effort was to functionally evaluate the performance of the refractive secondary concentrator/extractor prototype and to compare the results with modeling. Most of the light was found to exit the refractive secondary concentrator through the extractor. In addition, the degree of attenuation encountered by the light as it passed through the refractive secondary concentrator was of interest.
Technical Paper

On the Development of Frame Analysis Program to Simulate Automotive Frame using Direct Dynamic Stiffness Approach

2006-04-03
2006-01-0990
There are many frame analysis programs in the industry, but none of them use the direct dynamic stiffness approach to simulate the frequency response of frames. The Frequency Response Functions (FRF) computation is an important step in determining Noise, Vibration and Harshness (NVH) of any automotive vehicle. Usually, a CAE engineer in the automotive industry will first compute the modal characteristic of the frame component or full body/trim structure, and then compute the frequency response functions to aid in the determination of its ability to withstand the random road load input applied on the structure. There exists an alternate approach to compute the frequency response functions on structures without the need to compute its modal characteristics. This direct method of FRF computation is based on using the direct dynamic stiffness influence computations in conjunction with the classical finite element analysis procedure.
Technical Paper

Numerical Investigation of Snow Accumulation on a Sensor Surface of Autonomous Vehicle

2020-04-14
2020-01-0953
Autonomous Vehicles (AVs) operate based on image information and 3D maps generated by sensors like cameras, LIDARs and RADARs. This information is processed by the on-board processing units to provide the right actuation signals to drive the vehicle. For safe operation, these sensors should provide continuous high quality data to the processing units without interruption in all driving conditions like dust, rain, snow and any other adverse driving conditions. Any contamination on the sensor surface/lens due to rain droplets, snow, and other debris would result in adverse impact to the quality of data provided for sensor fusion and this could result in error states for autonomous driving. In particular, snow is a common contamination condition during driving that might block a sensor surface or camera lens. Predicting and preventing snow accumulation over the sensor surface of an AV is important to overcome this challenge.
Technical Paper

NDE Methodologies for Composite Flywheels Certification

2000-10-31
2000-01-3655
Manufacturing readiness of composite rotors and certification of flywheels depend in part on the maturity of nondestructive evaluation (NDE) technology for process optimization and quality assurance, respectively. Capabilities and limitations of x-ray-computed tomography and radiography, as well as advanced ultrasonics were established on NDE ring and rotor standards with EDM notches and drilled holes. Also, intentionally seeded delamination, tow break, and insert of bagging material were introduced in hydroburst-rings to study the NDE detection capabilities of such anomalies and their effect on the damage tolerance and safe life margins of subscale rings and rotors. Examples of possible occurring flaws or anomalies in composite rings as detected by NDE and validated by destructive metallography are shown. The general NDE approach to ensure quality of composite rotors and to help in the certification of flywheels is briefly outlined.
Technical Paper

NASA's In-Flight Education and Training Aids for Pilots and Operators

2003-06-16
2003-01-2142
To support NASA's goal to improve aviation safety, the Aircraft Icing Project of the Aviation Safety Program has developed a number of education and training aids for pilots and operators on the hazards of atmospheric icing. A review of aircraft incident and accident investigations has revealed that flight crews have not always understood the effects of ice contamination on their aircraft. To increase this awareness, NASA has partnered with regulatory agencies and pilot trade organizations to assure relevant and practical materials that are focused toward the intended pilot audience. A number of new instructional design approaches and media delivery methods have been introduced to increase the effectiveness of the training materials by enhancing the learning experience, expanding user interactivity and participation, and, hopefully, increasing learner retention rates.
Technical Paper

Multi-Level Decoupled Optimization of Wind Turbine Structures

2015-04-14
2015-01-0434
This paper proposes a multi-level decoupled method for optimizing the structural design of a wind turbine blade. The proposed method reduces the design space by employing a two-level optimization process. At the high-level, the structural properties of each section are approximated by an exponential function of the distance of that section from the blade root. High-level design variables are the coefficients of this approximating function. Target values for the structural properties of the blade are determined at that level. At the low-level, sections are divided into small decoupled groups. For each section, the low-level optimizer finds the thickness of laminate layers with a minimum mass, whose structural properties meet the targets determined by the high-level optimizer. In the proposed method, each low-level optimizer only considers a small number of design variables for a particular section, while traditional, single-level methods consider all design variables simultaneously.
Technical Paper

Modeling Dependence and Assessing the Effect of Uncertainty in Dependence in Probabilistic Analysis and Decision Under Uncertainty

2010-04-12
2010-01-0697
A complete probabilistic model of uncertainty in probabilistic analysis and design problems is the joint probability distribution of the random variables. Often, it is impractical to estimate this joint probability distribution because the mechanism of the dependence of the variables is not completely understood. This paper proposes modeling dependence by using copulas and demonstrates their representational power. It also compares this representation with a Monte-Carlo simulation using dispersive sampling.
X