Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Water and Energy Transport for Crops under Different Lighting Conditions

2006-07-17
2006-01-2028
When high-intensity discharge (HID) electric lamps are used for plant growth, system inefficiencies occur due to an inability to effectively target light to all photosynthetic tissues of a growing crop stand, especially when it is closed with respect to light penetration. To maintain acceptable crop productivity, light levels typically are increased thus increasing heat loads on the plants. Evapotranspiration (ET) or transparent thermal barrier systems are subsequently required to maintain thermal balance, and power-intensive condensers are used to recover the evaporated water for reuse in closed systems. By accurately targeting light to plant tissues, electric lamps can be operated at lower power settings and produce less heat. With lower power and heat loads, less energy is used for plant growth, and possibly less water is evapotranspired. By combining these effects, a considerable energy savings is possible.
Technical Paper

Wastestream Characterization for a Packed Bed Biofilter Intended for Simultaneous Treatment of Graywater and Air in an Advanced Life Support System

2003-07-07
2003-01-2555
An important function of life support systems developed for a long duration human mission to Mars is the ability to recycle water and air. The Bio-Regenerative Environmental Air Treatment for Health (BREATHe) is part of a multicomponent life support system and will simultaneously treat wastewater and air. The BREATHe system will consist of packed bed biofilm reactors. Model waste streams will be used for experiments conducted during the design phase of the BREATHe system. This paper summarizes expected characteristics of water and air waste steams that would be generated by a crew of six during a human mission to Mars. In addition to waste air and water generation rates, the chemical composition of each waste stream is defined. Specifically, chemical constituents expected to be present in hygiene wastewater, dishwater, laundry water, atmospheric condensate, and cabin air are presented.
Technical Paper

Wall Interactions of Hydrogen Flames Compared with Hydrocarbon Flames

2007-04-16
2007-01-1466
This paper provides a comparison of wall heat fluxes and quenching distances as one-dimensional hydrogen and heptane flames impinge head-on onto a wall. It is shown that the quenching distances for stoichiometric H2/air and C7H16/air flames under the specified conditions of this study are about the same, but the wall heat flux for the H2/air flames is approximately a factor of two greater. For lean H2/air mixtures, the quenching distance increases substantially and the wall heat flux decreases. To understand more clearly the interplay of flame speed, temperature, thermal diffusivity, and surface kinetics on the results, studies of H2/O2 flames are also carried out.
Technical Paper

Urine Processing for Water Recovery via Freeze Concentration

2005-07-11
2005-01-3032
Resource recovery, including that of urine water extraction, is one of the most crucial aspects of long-term life support in interplanetary space travel. This paper will consequently examine an innovative approach to processing raw, undiluted urine based on low-temperature freezing. This strategy is uniquely different from NASA's current emphasis on either ‘integrated’ (co-treatment of mixed urine, grey, and condensate waters) or ‘high-temperature’ (i.e., VCD [vapor compression distillation] or VPCAR [vapor phase catalytic ammonia removal]) processing strategies, whereby this liquid freeze-thaw (LiFT) procedure would avoid both chemical and microbial cross-contamination concerns while at the same time securing highly desirable reductions in likely ESM levels.
Technical Paper

Truck Ride — A Mathematical and Empirical Study

1969-02-01
690099
“Truck Ride” in this study refers to some vehicle ride parameters involved in tractor-trailer combinations. For the study, a mathematical model of a tractor-trailer vehicle as a vibrating system was developed. Principles of vibration theory were applied to the model while a digital computer was employed to investigate the complex system. To parallel the analytical investigation of the tractor-trailer vehicle, vehicle studies were conducted using a magnetic tape recorder and associated instrumentation installed in the tractor. Parameters studied included coupler position on the tractor, laden weight of trailer, spring rates of the different axles of the combination, damping capacity associated with each spring rate, vehicle speed, and “tar strip” spacing of the highway and cab mountings. The mathematical results were used as a basis for empirical study. A comparison of calculated and empirical data are reported.
Technical Paper

Training Materials for Agricultural Safety and Health

1975-02-01
750785
AN INTERDISCIPLINARY TEAM from Purdue University is developing a comprehensive set of educational materials for agricultural safety and health for OSHA, of the U. S. Department of Labor. The team from the Purdue school of Agriculture, school of Veterinary Medicine, and the school of Humanities, Social Science and Education are working for a year and a half to gather and catalog all existing safety materials, and to produce new ones to meet nationwide needs. The project was begun on July 1, 1974 and is scheduled to be completed by December 31, 1975. The project team includes John B. Liljedahl, professor of agricultural engineering, project leader; Avery H. Gray, assistant department head, 4-H and Youth; William H. Hamilton, agricultural education; David H. Loewer, Extension agricultural engineer; David L. Matthew, Extension Entomologist; Vernon B. Mayrose, Extension animal scientist; Ken Weinland, Extension veterinarian; Bruce A. McKenzie, Extension agricultural engineer; James L.
Technical Paper

Three Dimensional Simulation of Flow in an Axial Low Pressure Compressor at Engine Icing Operating Points

2015-06-15
2015-01-2132
Three-dimensional simulations of the Honeywell ALF502 low pressure compressor (sometimes called a booster) using the NASA Glenn code GlennHT have been carried out. A total of eight operating points were investigated. These operating points are at, or near, points where engine icing has been determined to be likely. The results of this study were used, in a companion paper, for further analysis such as predicting collection efficiency of ice particles and ice growth rates at various locations in the compressor. In an effort to minimize computational effort, inviscid solutions with slip walls are produced. A mixing plane boundary condition is used between each blade row, resulting in convergence to steady state within each blade row. Comparisons of the results are made to other simplified analysis. An additional modification to the simulation process is also presented.
Technical Paper

Thin-Walled Compliant Mechanism Component Design Assisted by Machine Learning and Multiple Surrogates

2015-04-14
2015-01-1369
This work introduces a new design algorithm to optimize progressively folding thin-walled structures and in order to improve automotive crashworthiness. The proposed design algorithm is composed of three stages: conceptual thickness distribution, design parameterization, and multi-objective design optimization. The conceptual thickness distribution stage generates an innovative design using a novel one-iteration compliant mechanism approach that triggers progressive folding even on irregular structures under oblique impact. The design parameterization stage optimally segments the conceptual design into a reduced number of clusters using a machine learning K-means algorithm. Finally, the multi-objective design optimization stage finds non-dominated designs of maximum specific energy absorption and minimum peak crushing force.
Technical Paper

Thermal Interface Materials Based on Anchored Carbon Nanotubes

2007-07-09
2007-01-3127
The new devices and missions to achieve the aims of NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and applications. In particular, the low conductance of metal-to-metal interfaces used in the thermal switches lengthen the cool-down phase and resource usage for spacecraft instruments. During this work, we developed and tested a vacuum-compatible, durable, heat-conduction interface that employs carbon nanotube (CNT) arrays directly anchored on the mating metal surfaces via microwave plasma-enhanced, chemical vapor deposition (PECVD). We demonstrated that CNT-based thermal interface materials have the potential to exceed the performance of currently available options for thermal switches and other applications.
Journal Article

The Utility of Wide-Bandwidth Emulation to Evaluate Aircraft Power System Performance

2016-09-20
2016-01-1982
The cost and complexity of aircraft power systems limit the number of integrated system evaluations that can be performed in hardware. As a result, evaluations are often performed using emulators to mimic components or subsystems. As an example, aircraft generation systems are often tested using an emulator that consists of a bank of resistors that are switched to represent the power draw of one or more actuators. In this research, consideration is given to modern wide bandwidth emulators (WBEs) that use power electronics and digital controls to obtain wide bandwidth control of power, current, or voltage. Specifically, this paper first looks at how well a WBE can emulate the impedance of a load when coupled to a real-time model. Capturing the impedance of loads and sources is important for accurately assessing the small-signal stability of a system.
Technical Paper

The Status of Error Management and Human Factors in Regional Airlines

1999-04-20
1999-01-1594
This paper explores the current status of error management strategies and human factors efforts within regional airlines. It briefly addresses the potential needs of the environment from a perspective of the market’s accident and incident history as well as anecdotal reports received from members of the regional airline community. It also raises questions concerning the applicability of human factors and error management strategies developed in other segments of aviation to the problems faced within regional airline environments.
Technical Paper

The Influence of SLD Drop Size Distributions on Ice Accretion in the NASA Icing Research Tunnel

2019-06-10
2019-01-2022
An ice shape database has been created to document ice accretions on a 21-inch chord NACA0012 model and a 72-inch chord NACA 23012 airfoil model resulting from an exposure to a Supercooled Large Drop (SLD) icing cloud with a bimodal drop size distribution. The ice shapes created were documented with photographs, laser scanned surface measurements over a section of the model span, and measurement of the ice mass over the same section of each accretion. The icing conditions used in the test matrix were based upon previously used conditions on the same models but with an alternate approach to evaluation of drop distribution effects. Ice shapes resulting from the bimodal distribution as well as from equivalent monomodal drop size distributions were obtained and compared.
Technical Paper

The Effects of Cage Flexibility on Ball-to-Cage Pocket Contact Forces and Cage Instability in Deep Groove Ball Bearings

2006-04-03
2006-01-0358
Rolling element bearings provide near frictionless relative motion between two rotating parts. Automotive transmissions use various ball and rolling element bearings to accommodate the relative motion between rotating elements. In order to understand changes in bearing performance due to the loads imposed through the transmission, advanced modeling of the bearing is required. This paper focuses on the effects of cage flexibility on bearing performance. A flexible cage model was developed and incorporated into a six degree-of-freedom dynamic, deep groove ball bearing model. A lumped mass approach was used to represent the cage flexibility and was validated through an ANSYS forced response analyses of the cage. Results from the newly developed Flexible Cage Model (FCM) and an identical numerical model employing a rigid bearing cage were compared to determine the effects of varying ball-to-cage pocket clearance and cage stiffness on cage motion and ball-to-cage pocket contact forces.
Journal Article

The Development of Terrain Pre-filtering Technique Based on Constraint Mode Tire Model

2015-09-01
2015-01-9113
The vertical force generated from terrain-tire interaction has long been of interest for vehicle dynamic simulations and chassis development. To improve simulation efficiency while still providing reliable load prediction, a terrain pre-filtering technique using a constraint mode tire model is developed. The wheel is assumed to convey one quarter of the vehicle load constantly. At each location along the tire's path, the wheel center height is adjusted until the spindle load reaches the pre-designated load. The resultant vertical trajectory of the wheel center can be used as an equivalent terrain profile input to a simplified tire model. During iterative simulations, the filtered terrain profile, coupled with a simple point follower tire model is used to predict the spindle force. The same vehicle dynamic simulation system coupled with constraint mode tire model is built to generate reference forces.
Technical Paper

The Design and Evaluation of Microphone Arrays for the Visualization of Noise Sources on Moving Vehicles

1999-05-17
1999-01-1742
The present work was directed towards the design of a sideline microphone array specifically adapted to the visualization of automotive noise sources in the 500 Hz to 2000 Hz range. The particular design philosophy followed here involved the minimization of the array redundancy: i.e., the minimization of the number of pairs of microphones that are separated by the same distance in the same directions. The performance of sixty-four element microphone arrays designed according to this principle will be illustrated through the use of simulated motor vehicle passbys. In addition, their performance will be compared with more conventional array designs: e.g., elliptical, and spiral arrays.
Technical Paper

The Computed Structure of a Combusting Transient Jet Under Diesel Conditions

1998-02-23
981071
Numerical computations of combusting transient jets are performed under diesel-like conditions. Discussions of the structure of such jets are presented from global and detailed points of view. From a global point of view, we show that the computed flame heights agree with deductions from theory and that integrated soot mass and heat release rates are consistent with expected trends. We present results of several paramaters which characterise the details of the jet structure. These are fuel mass fractions, temperature, heat release rates, soot and NO. Some of these parameters are compared with the structure of a combusting diesel spray as deduced from measurements and reported in the literature. The heat release rate contours show that the region of chemical reactions is confined to a thin sheet as expected for a diffusion flame. The soot contour plots appear to agree qualitatively with the experimental observations.
Journal Article

The Application of Singular Value Decomposition to Determine the Sources of Far Field Diesel Engine Noise

2013-05-13
2013-01-1974
The identification of the dominant noise sources in diesel engines and the assessment of their contribution to far-field noise is a process that can involve both fired and motored testing. In the present work, the cross-spectral densities of signals from cylinder pressure transducers, accelerometers mounted on the engine surface, and microphones (in the near and far fields), were used to identify dominant noise sources and estimate the transfer paths from the various “inputs” (i.e., the cylinder pressures, the accelerometers and the near field microphones) to the far field microphones. The method is based on singular value decomposition of the input cross-spectral matrix to relate the input measurements to independent virtual sources. The frequencies at which a particular input is strongly affected by an independent source are highlighted, and with knowledge of transducer locations, inferences can be drawn as to possible noise source mechanisms.
Technical Paper

The Application of Acoustic Radiation Modes to Engine Oil Pan Design

2017-06-05
2017-01-1844
In modern engine design, downsizing and reducing weight while still providing an increased amount of power has been a general trend in recent decades. Traditionally, an engine design with superior NVH performance usually comes with a heavier, thus sturdier structure. Therefore, modern engine design requires that NVH be considered in the very early design stage to avoid modifications of engine structure at the last minute, when very few changes can be made. NVH design optimization of engine components has become more practical due to the development of computer software and hardware. However, there is still a need for smarter algorithms to draw a direct relationship between the design and the radiated sound power. At the moment, techniques based on modal acoustic transfer vectors (MATVs) have gained popularity in design optimization for their good performance in sound pressure prediction.
Technical Paper

The Analysis of Counter-Rotating Propeller Systems

1985-04-01
850869
A vortex lattice method for the aerodynamic analysis of counter-rotation propellers was developed. This model along with an unsteady Sears analysis for correcting the quasi-steady loadings that are obtained from the vortex lattice model were used to predict the performance of counter-rotation propeller systems. The method developed shows good correlation with experimental results. The investigation into the unsteady loadings on each of the propellers indicates that significant variations in loading occur due to the unsteady flow and due to the propeller blade passage. These variations were found to be as high as 17 percent of the mean value. The parametric studies that were performed indicate that reducing the rear propeller's diameter or rotational speed results in a loss of efficiency.
Technical Paper

THE EFFECT OF PROPLETS AND BI-BLADES ON THE PERFORMANCE AND NOISE OF PROPELLERS

1981-02-01
810600
A analytical technique for predicting the aerodynamic performance of propellers with tip devices (proplets) using vortex lattice method shows that the ideal efficiency of a fixed diameter propeller can be improved by 1-5%. By suitable orientation and sweep of the proplet, the noise analysis method presented predicts that propellers with tip devices will have approximately the same noise as propellers without tip devices. Therefore proplets can be added to a fixed diameter propeller to improve the efficiency with no increase in noise or the noise may be reduced by decreasing the diameter with no loss in aerodynamic efficiency.
X