Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Wingtip Vortex Turbine Investigation for Vortex Energy Recovery

1990-09-01
901936
A flight test investigation has been conducted to determine the performance of wingtip vortex turbines and their effect on aircraft performance. The turbines were designed to recover part of the large energy loss (induced drag) caused by the wingtip vortex. The turbine, driven by the vortex flow, reduces the strength of the vortex, resulting in an associated induced drag reduction. A four-blade turbine was mounted on each wingtip of a single-engine, T-tail, general aviation airplane. Two sets of turbine blades were tested, one with a 15° twist (washin) and one with no twist. The power recovered by the turbine and the installed drag increment were measured. A trade-off between turbine power and induced drag reduction was found to be a function of turbine blade incidence angle. This test has demonstrated that the wingtip vortex turbine is an attractive alternate, as well as an emergency, power source.
Technical Paper

Wing Modification for Increased Spin Resistance

1983-02-01
830720
A simple wing leading-edge modification has been developed that delays outer wing panel stall, thus maintaining roll damping to higher angles of attack and delaying the onset of autorotation. The stall angle of attack of the outer wing panel has been shown to be a function of the spanwise length of the leading-edge modification. The margin of spin resistance provided by the modification is being explored through flight tests. Preliminary results have been used to evaluate spin resistance in terms of the difference in angle of attack between outer wing panel stall and the maxiumum attainable angle of attack.
Technical Paper

Thermal Model Correlation for Mars Reconnaissance Orbiter

2007-07-09
2007-01-3243
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and began aerobraking at Mars in March 2006. In order to save propellant, MRO used aerobraking to modify the initial orbit at Mars. The spacecraft passed through the atmosphere briefly on each orbit; during each pass the spacecraft was slowed by atmospheric drag, thus lowering the orbit apoapsis. The largest area on the spacecraft, most affected by aeroheating, was the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley Research Center to simulate their performance throughout the entire roughly 6-month period of aerobraking. A companion paper describes the development of this thermal model. This model has been correlated against many sets of flight data. Several maneuvers were performed during the cruise to Mars, such as thruster calibrations, which involve large abrupt changes in the spacecraft orientation relative to the sun.
Technical Paper

The Laminar Separation Sensor: An Advanced Transition Measurement Method for Use in Wind Tunnels and Flight

1987-09-01
871018
Current viscous drag reduction research explores the limits of practical applications of natural laminar flow (NLF) for airplane drag reduction. To better understand these limits, advanced measurement techniques are required to study the characteristics of laminar to turbulent boundary-layer transition. Recent NASA research indicates that the transition mode which involves laminar separation can be detected using arrayed hot-film laminar separation sensor concepts. These surface-mounted sensors can provide information on the location of the laminar separation bubble as well as bubble length. This paper presents two different laminar separation sensor configurations developed in the NASA program and presents results of wind-tunnel and flight evaluations of the sensors as tools to detect boundary-layer transition.
Technical Paper

Spin Resistance Development for Small Airplanes - A Retrospective

2000-05-09
2000-01-1691
With the resurgence of the General Aviation industry, the incentive to develop new airplanes for the low-end market has increased. Increased production of small airplanes provides the designers and manufacturers the opportunity to incorporate advanced technologies that are not readily retrofitable to existing designs. Spin resistance is one such technology whose development was concluded by NASA during the 1980’s when the production of small airplanes had slipped into near extinction. This paper reviews the development of spin resistance technology for small airplanes with emphasis on wing design. The definition of what constitutes spin resistance and the resulting amendment of the Federal Aviation Regulations Part 23 to enable certification of spin resistant airplanes are also covered.
Technical Paper

Review of NASA Antiskid Braking Research

1982-02-01
821393
NASA antiskid braking system research programs are reviewed. These programs include experimental studies of four antiskid systems on the Langley Landing Loads Track, flight tests with a DC-9 airplane, and computer simulation studies. Results from these research efforts include identification of factors contributing to degraded antiskid performance under adverse weather conditions, tire tread temperature measurements during antiskid braking on dry runway surfaces, and an assessment of the accuracy of various brake pressure-torque computer models. This information should lead to the development of better antiskid systems in the future.
Technical Paper

Radiation Shielding Issues in Highly Inclined Low Earth Orbits

1996-07-01
961581
The highly inclined orbit of the International Space Station Alpha exhibits significant radiation exposure contributions from the galactic cosmic rays penetrating the earth's magnetic field. In the absence of an accepted method for estimating the corresponding astronaut risk, we examined the attenuation characteristics using conventional LET dependent quality factors (as one means of representing RBE) and a track-structure repair model fit to cell transformation (and inactivation) data in the C3H10T1/2 mouse cell system obtained by T. C. Yang and coworkers for various ion beams. Although the usual aluminum spacecraft shield is effective in reducing dose equivalent with increasing shield thickness, cell transformation rates are increased for thin aluminum shields providing increased risk rather than protection to large shield thickness.
Technical Paper

Parametric Shielding Strategies for Jupiter Magnetospheric Missions

2005-07-11
2005-01-2834
Judicious shielding strategies incorporated in the initial spacecraft design phase for the purpose of minimizing deleterious effects to onboard systems in intense radiation environments will play a major role in ensuring overall mission success. In this paper, we present parametric shielding analyses for the three Jupiter Icy Moons, Callisto, Ganymede, and Europa, as a function of time in orbit at each moon, orbital inclination, and various thicknesses, for low- and high-Z shielding materials. Trapped electron and proton spectra using the GIRE (Galileo Interim Radiation Electron) environment model were generated and used as source terms to both deterministic and Monte Carlo high energy particle transport codes to compute absorbed dose as a function of thickness for aluminum, polyethylene, and tantalum. Extensive analyses are also presented for graded-Z materials.
Technical Paper

Orbiter Post-Tire Failure and Skid Testing Results

1989-09-01
892338
An investigation was conducted at the NASA Langley Research Center's Aircraft Landing Dynamics Facility (ALDF) to define the post-tire failure drag characteristics of the Space Shuttle Orbiter main tire and wheel assembly. Skid tests on various materials were also conducted to define their friction and wear rate characteristics under higher speed and bearing pressures than any previous tests. The skid tests were conducted to support a feasibility study of adding a skid to the orbiter strut between the main tires to protect an intact tire from failure due to overload should one of the tires fail. Roll-on-rim tests were conducted to define the ability of a standard and a modified orbiter main wheel to roll without a tire. Results of the investigation are combined into a generic model of strut drag versus time under failure conditions for inclusion into rollout simulators used to train the shuttle astronauts.
Technical Paper

Hybrid Laminar Flow Control Applied to Advanced Turbofan Engine Nacelles

1992-04-01
920962
In recent years, the National Aeronautics and Space Administration (NASA) in cooperation with U.S. industry has performed flight and wind-tunnel investigations aimed at demonstrating the feasibility of obtaining significant amounts of laminar boundary-layer flow at moderate Reynolds numbers on the swept-back wings of commercial transport aircraft. Significant local drag reductions have been recorded with the use of a hybrid laminar flow control (HLFC) concept. In this paper, we address the potential application of HLFC to the external surface of an advanced, high bypass ratio turbofan engine nacelle with a wetted area which approaches 15 percent of the wing total wetted area of future commercial transports. A pressure distribution compatible with HLFC is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer.
Technical Paper

Flight Investigation of Natural Laminar Flow on the Bellanca Skyrocket II

1983-02-01
830717
Two major concerns have inhibited the use of natural laminar flow (NLF) for viscous drag reduction on production aircraft. These are the concerns of achieveability of NLF on practical airframe surfaces, and maintainability in operating environments. Previous research in this area left a mixture of positive and negative conclusions regarding these concerns. While early (pre-1950) airframe construction methods could not achieve NLF criteria for waviness, several modern construction methods (composites for example) can achieve the required smoothness. This paper presents flight experiment data on the achieveability and maintainability of NLF on a high-performance, single-propeller, composite airplane, the Bellanca Skyrocket II. The significant contribution of laminar flow to the performance of this airplane was measured. Observations of laminar flow in the propeller slipstream are discussed, as are the effects of insect contamination on the wing.
Technical Paper

Development of Race Car Testing at the Langley Full-Scale Tunnel

1998-11-16
983040
This paper reviews the development of a new test capability for race cars at the Langley Full-Scale Tunnel. The existing external force balance of the Langley Full-Scale Tunnel, designed for use with full-scale aircraft, was reconfigured for automobile testing. Details of structural modifications relevant to supporting cars and force measurements are shown. A specialized automobile force balance, measuring vehicle drag and individual wheel downforce, was then designed, constructed and calibrated. The design was governed by simplicity and low cost and was tailored to the stock car racing community. The balance became fully operational in early 1998. The overall layout of the automobile balance and comparisons to reference data from another full-scale wind tunnel is presented.
Technical Paper

Application of Laminar Flow Control to High-Bypass-Ratio Turbofan Engine Nacelles

1991-09-01
912114
Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-fiow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption.
Technical Paper

An Investigation of the Effects of the Propeller Slipstream on a Laminar Wing Boundary Layer

1985-04-01
850859
A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.
Technical Paper

An Improved Green’s Function Code for HZE Ion Transport

2006-07-17
2006-01-2147
A new Green’s function code (GRNTRN) capable of simulating HZE ions with either laboratory or space boundary conditions is currently under development. The computational model consists of combinations of physical perturbation expansions based on the scales of atomic interaction, multiple scattering, and nuclear reactive processes with use of the Neumann-asymptotic expansions with non-perturbative corrections. The code contains energy loss due to straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and downshifts. Recent publications have focused on code validation in the laboratory environment and have shown that the code predicts energy loss spectra accurately as measured by solid-state detectors in ion beam experiments. In this paper emphasis is placed on code validation with space boundary conditions.
Technical Paper

Airframe Technology for Energy Efficient Transport Aircraft

1976-02-01
760929
Fuel costs comprise a major portion of air transport operating costs. Thus, energy efficiency is an essential design goal for future transport aircraft. Advanced composite structures, advanced wing geometries, and active control systems all promise substantial benefits in fuel efficiency and direct operating cost for derivative and new aircraft introduced by 1985. Technology for maintenance of a laminar boundary layer in cruise offers great benefits in fuel efficiency and direct operating cost and may be ready for application to transports introduced in the 1990's. NASA and the air transport industry are cooperating in a comprehensive Aircraft Energy Efficiency Program to expedite the introduction of these advanced technologies into production aircraft.
Technical Paper

Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

2011-06-13
2011-38-0065
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM.
Technical Paper

Aerodynamic Design Data For a Cruise-Matched High Performance Single Engine Airplane

1981-04-01
810625
Design data are presented for a class of high-performance single-engine business airplanes. The design objectives include a cruise speed of 300 knots, a cruise altitude of 10,700 m (35,000 ft), a cruise payload of six passengers (including crew and baggage), and a no-reserves cruise range of 1300 n.mi. Two unconventional aerodynamic technologies were evaluated: the individual and combined effects of cruise-matched wing loading and of a natural laminar flow airfoil were analyzed. The tradeoff data presented illustrate the ranges of wing geometries, propulsion requirements, airplane weights, and aerodynamic characteristics which are necessary to meet the design objectives. very large design and performance improvements resulted from use of the aerodynamic technologies evaluated. Is is shown that the potential exists for achieving more than 200-percent greater fuel efficiency than is achieved by current airplanes capable of similar cruise speeds, payloads, and ranges.
Technical Paper

A Summary of the Effects of Reynolds Number on Drag Divergence for Airfoils Tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel

1986-10-01
861767
The direct first order effect of Reynolds number on the determination of drag-divergence conditions is summarized for six airfoils which were tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel. A second order effect, derived through the effect of Reynolds number on the sidewall boundary layer, is included. In addition, a comparison of how the drag-divergence condition is affected on going from one class of airfoil to another is presented. The drag-divergence condition is affected first order by Reynolds number for each of the six airfoils and of course all data are affected second order, since the presence of the boundary layer necessitates a sidewall correction.
Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
X