Refine Your Search

Topic

Author

Search Results

Technical Paper

Validation and Instrumentation of a Small Modular Multi-Stage Axial Compressor for Ice Crystal Icing Research

2019-06-10
2019-01-1940
The National Research Council of Canada (NRC) has undergone the development of a Small Axial Compressor Rig for modelling altitude ice accretion in aircraft engines. The rig consists of two axial compressor stages measuring approximately 150mm in diameter, an extension duct to allow residence time for partial melting of ice crystals and a test piece. The axial compressor stages are intended to provide realistic engine conditioning such as fracture, pressure rise, temperature rise and centrifuging of glaciated ice crystals entering the rig. The rig was designed for use in altitude icing wind tunnels such as the NRC’s altitude icing wind tunnel (AIWT), research altitude test facility (RATFac.), and those of other organization such as NASA Glenn and Technical University of Braunshweig. Previous development work [1] provided partial validation of the aerodynamic performance of just the first compressor stage at 90% power.
Journal Article

Validation Testing of Lithium Battery Performance-Based Packaging for Use in Air Transportation (SAE G-27)

2020-03-10
2020-01-0042
The SAE G-27 committee was tasked by ICAO to develop a performance-based packaging standard for lithium batteries transported as cargo on aircraft. The standard details test criteria to qualify packages of lithium batteries & cells for transportation as cargo on-board passenger aircraft. Lithium batteries and cells have been prohibited from shipment as cargo on passenger aircraft since 2016. This paper summarizes the results of the tests conducted by Transport Canada and National Research Council Canada to support the development of this standard with evidence-based recommendations. It includes a description of the test specimens, the test set up, instrumentation used, and test procedures following the standard as drafted to date. The study considered several lithium-ion battery and cell chemistries that were tested under various proposed testing scenarios in the draft standard.
Journal Article

Track-Based Aerodynamic Testing of a Two-Truck Platoon

2021-04-06
2021-01-0941
Fuel savings from truck platooning are generally attributed to an aerodynamic drag-reduction phenomena associated with close-proximity driving. The current paper is the third in a series of papers documenting track testing of a two-truck platoon with a Cooperative Adaptive Cruise Control (CACC) system where fuel savings and aerodynamics measurements were performed simultaneously. Constant-speed road-load measurements from instrumented driveshafts and on-board wind anemometry were combined with vehicle measurements to calculate the aerodynamic drag-area of the vehicles. The drag-area results are presented for each vehicle in the two-truck platoon, and the corresponding drag-area reductions are shown for a variety of conditions: gap separation distances (9 m to 87 m), lateral offsets (up to 1.3 m), dry-van and flatbed trailers, and in the presence of surrounding traffic.
Journal Article

The Influence of Traffic Wakes on the Aerodynamic Performance of Heavy Duty Vehicles

2023-04-11
2023-01-0919
Road vehicles have been shown to experience measurable changes in aerodynamic performance when travelling in everyday safe-distance driving conditions, with a major contributor being the lower effective wind speed associated with the wakes from forward vehicles. Using a novel traffic-wake-generator system, a comprehensive test program was undertaken to examine the influence of traffic wakes on the aerodynamic performance of heavy-duty vehicles (HDVs). The experiments were conducted in a large wind tunnel with four primary variants of a high-fidelity 30%-scale tractor-trailer model. Three high-roof-tractor models (conventional North-American sleeper-cab and day-cab, and a zero-emissions-cab style) paired with a standard dry-van trailer were tested, along with a low-roof day-cab tractor paired with a flat-bed trailer.
Journal Article

The Effects of Ground Simulation on Tractor-Trailer Combinations

2013-09-24
2013-01-2454
The 9-meter wind tunnel of the National Research Council (NRC) of Canada is equipped with a boundary layer suction system, center belt and wheel rollers to simulate ground motion relative to test articles. Although these systems were originally commissioned for testing of full-scale automotive models, they are appropriately sized for ground simulation with half-scale tractor-trailer combinations. The size of the tunnel presents an opportunity to test half-scale commercial vehicles at full-scale Reynolds numbers with a model that occupies 3% of the test section cross-sectional area. This study looks at the effects of ground simulation on the force and pressure data of a half-scale model with rotating tractor wheels. A series of model changes, typical of a drag reduction program, were undertaken and each configuration was tested with both a fixed floor and with full-ground simulation to evaluate the effects of this technology on the total and incremental drag coefficients.
Journal Article

Testing of Elastomer Icephobic Coatings in the AIWT: Lessons Learned

2019-06-10
2019-01-1994
A study has been conducted into icephobic properties of some highly durable “off-the-shelf” elastomer materials using a rotating ice adhesion test rig installed in the NRC’s Altitude Icing Wind Tunnel. This enabled the formation of ice at environmental conditions similar to those experienced during in-flight icing encounters. Initially, the tests indicated some very positive results with ice adhesion shear stress as low as 8KPa. On further examination, however, it became apparent that the test preparation process, in which the samples were cleaned with an ethanol alcohol solution, influenced the results due to absorption and prolonged retention of the cleaning fluid. The uptake of the ethanol alcohol solution by the elastomer was found to be a function of the surface temperature and remained absorbed into the coating during the ice accretion process changing the characteristics of the coating in such a way that led to a reduction in the ice/surface bond strength.
Technical Paper

Technique for Ice Crystal Particle Size Measurements and Results for the National Research Council of Canada Altitude Ice Crystal Test System

2015-06-15
2015-01-2125
This paper describes the equipment, analysis methods and results obtained for particle size measurements based on a particle imaging velocimetry (PIV) system in which a short duration laser pulse is used to backlight airborne particles. This produces high quality and high resolution images of fast moving airborne particles in a non-intrusive manner. This imaging technique is also used to examine particle morphology and 2D particle trajectory and velocity. The image analysis methods are outlined and validation test results discussed which show the measurement of reference glass beads between 20 and 400 microns were generally to within their stated size. As well, validation testing using known icing wind tunnel droplet distributions were compared with Spraytek 2000 Malvern droplet size measurements and showed agreement of the MVD's to be within ±5% for distributions having nominally 20, 40 and 80 micron MVD's.
Journal Article

Simulation of Atmospheric Turbulence for Wind-Tunnel Tests on Full-Scale Light-Duty Vehicles

2016-04-05
2016-01-1583
During the past year, a novel turbulence generation system has been commissioned in the National Research Council (NRC) 9 m Wind Tunnel. This system, called the Road Turbulence System was developed to simulate with high fidelity the turbulence experienced by a heavy duty vehicle on the road at a geometrical scale of 30%. The turbulence characteristics that it can simulate were defined based on an extensive field measurement campaign on Canadian roads for various conditions (heavy and light traffic, topography, exposure) at heights above ground relevant not only for heavy duty vehicles but also for light duty vehicles. In an effort to improve continually the simulation of the road conditions for aerodynamic evaluations of ground vehicles, a study was carried out at NRC to define the applicability of the Road Turbulence System to aerodynamic testing of full-scale light duty vehicles.
Journal Article

Simulating Traffic-wake Effects in a Wind Tunnel

2023-04-11
2023-01-0950
Road-vehicle platooning is known to reduced aerodynamic drag. Recent aerodynamic-platooning investigations have suggested that follower-vehicle drag-reduction benefits persist to large, safe inter-vehicle driving distances experienced in everyday traffic. To investigate these traffic-wake effects, a wind-tunnel wake-generator system was designed and used for aerodynamic-performance testing with light-duty-vehicle (LDV) and heavy-duty-vehicle (HDV) models. This paper summarizes the development of this Road Traffic and Turbulence System (RT2S), including the identification of typical traffic-spacing conditions, and documents initial results from its use with road-vehicle models. Analysis of highway-traffic-volume data revealed that, in an uncongested urban-highway environment, the most-likely condition is a speed of 105 km/h with an inter-vehicle spacing of about 50 m.
Journal Article

Residual Stress Mapping along the Cylinder Bores of Al Alloy Engine Blocks Subjected to Production Solution Heat Treatment Schedule

2014-04-01
2014-01-0837
The development of an optimized heat treatment schedule, with the aim of maximizing strength and relieving tensile residual stress, is important to prevent in-service cylinder distortion in Al alloy engine blocks containing cast-in gray iron liners. However, to effectively optimize the engine block heat treatment schedule, the current solutionizing parameters must be analyzed and compared to the as-cast condition to establish a baseline for residual stress relief. In this study, neutron diffraction was carried out to measure the residual stress along the aluminum cylinder bridge following solution heat treatment. The stresses were measured in the hoop, radial and axial orientations and compared to a previous measured as-cast (TSR) engine block. The results suggest that solution heat treatment using the current production parameters partially relieved tensile residual stress in the Al cylinder bridge, with stress relief being more effective near the bottom of the cylinder.
Journal Article

Reduction of Hot Tears: Alloy and Casting Process Optimization Using Neutron Diffraction

2010-04-12
2010-01-0748
The continued need of vehicle weight reduction provides impetus for research into the development of novel automotive casting alloys and their processing technologies. Where possible, ferrous components are being replaced by aluminum (Al) and magnesium (Mg) alloy counterparts. This transition, however, requires a systematic optimization of the alloys and their manufacturing processes to enable production of defect-free castings. In this context, prevention of hot tears remains a challenge for Al and Mg alloy thin-wall castings. Hot tears form in semi-solid alloy subjected to localized tensile stress. Classical methods of stress measurement present numerous experimental limitations. In this research, neutron diffraction (ND) was used as a novel tool to obtain stress maps of castings and to quantify the effect of two processes used to eliminate hot tears in permanent mold castings: 1) increasing of the mold temperature during casting of Mg alloys, and 2) grain refinement of Al alloys.
Technical Paper

Optimization of Casting Parameters on an Improved AA6061 Aluminum Alloy for Semi-Solid Die Casting

2010-04-12
2010-01-0225
A study was conducted to assess the performance and castability of a new AA6061 aluminum alloy variant specially designed for semi-solid pressure die casting. The AA6061 alloy has very desirable mechanical properties for the fabrication of automotive parts. However, it has limited castability due to its low silicon content. It is not well suited for shape casting processes which are, for their part, very interesting in terms of production costs for complex-shaped automotive components. In an effort to meet automotive industry requirements, new AA6061 alloy variants have been developed by Rio Tinto Alcan researchers over the past years, aiming to improve the castability of the alloy while maintaining its desirable mechanical properties, by increasing its die-filling capacity, decreasing its hot tearing tendency. The study described herein is an example of how the performance of a single variant was assessed in terms of castability. The full study was conducted on six separate variants.
Journal Article

New Results from the Evaluation of Drag Reduction Technologies for Light-Duty Vehicles

2021-04-06
2021-01-0943
Aerodynamic technologies for light-duty vehicles were evaluated through full-scale testing in a large low-blockage closed-circuit wind tunnel equipped with a rolling road, wheel rollers, boundary-layer suction and a system to generate road-representative turbulent flow. This work was part of a multi-year, multi-vehicle study commissioned by Transport Canada and Environment and Climate Change Canada, and carried out in cooperation with the US EPA, to support the evaluation of light-duty-vehicle greenhouse-gas-emission regulations. A 2016 paper reported drag-reduction measurements for technologies such as active grille shutters, production and custom underbody treatments, air dams, ride height control and combinations of these. This paper describes an extension to that work and addresses vehicle aerodynamics in three ways.
Journal Article

Neutron Diffraction Study on Residual Stress in Aluminum Engine Blocks Following Machining and Service Testing

2012-04-16
2012-01-0188
Development of lightweight alloys suitable for automobile applications has been of great importance to the automotive industry in recent years. The use of 319 type aluminum alloy in the production of gasoline engine blocks is an example of this shift towards light alloys for large automobile components. However, excessive residual stress along the cylinder bores of these engine blocks may cause problems during engine operation. Therefore, in this study, neutron diffraction was used to evaluate residual stresses along the aluminum cylinder bridge and the gray cast iron liners. The strains were measured in the hoop, radial, and axial orientations, while stresses were subsequently calculated using generalized Hooke's law. The results suggest that the residual stress magnitude for the aluminum cylinder bridge was tensile for all three measured components and gradually increased with cylinder depth towards the bottom of the cylinder.
Journal Article

Near-to-Far Wake Characteristics of Road Vehicles Part 1: Influence of Ground Motion and Vehicle Shape

2021-04-06
2021-01-0957
Conventional assessments of the aerodynamic performance of ground vehicles have, to date, been considered in the context of a vehicle that encounters a uniform wind field in the absence of surrounding traffic. Recent vehicle-platooning studies have revealed measurable fuel savings when following other vehicles at inter-vehicle distances experienced in every-day traffic. These energy savings have been attributed in large part to the air-wakes of the leading vehicles. This set of three papers documents a study to examine the near-to-far regions of ground-vehicle wakes (one to ten vehicle lengths), in the context of their potential influence on other vehicles. Part one of this three-part paper documents principally the influence of vehicle shape on the development of its wake.
Technical Paper

Naturally Aspirating Isokinetic Total Water Content Probe: Wind Tunnel Test Results and Design Modifications

2011-06-13
2011-38-0036
A total water content probe for flight- and ground-based testing is being completed. During operation across a range of altitudes and water content conditions, the probe has to maintain isokinetic flow, vaporize the solid and liquid water content and maintain the inlet ice free to ensure isokinetic flow. Despite achieving isokinetic operation, the collection efficiency of particles less than 30 μm can be less than 100%. A correlation of collection efficiency to Stokes number has been determined to correct the results for this effect. In preparation for flight testing an integrated data acquisition, control and power supply unit was developed and successfully tested. Results from testing at the NASA Glenn Icing Research Tunnel are presented covering both ice crystals and super-cooled liquid conditions. The results correspond well to previously published work and problems encountered during previous testing of this probe are shown to have been resolved.
Technical Paper

NRC’s ICE-MACR 2018-2023: What Has Been Learned So Far

2023-06-15
2023-01-1377
The Ice Crystal Environment Modular Axial Compressor Rig (ICE-MACR) was developed by the National Research Council of Canada (NRC) with support from the Federal Aviation Administration (FAA) in response to the need to understand ice crystal icing of aircraft engines at high altitudes. Icing wind tunnel tests on static hardware lack some of the real physics of turbofan compressor such as centrifuging and fracturing of particles, and melting of particles due to compression heating, heat transfer through a casing wall, as well as annular geometry effects. Since the commissioning of ICE-MACR in 2019 new insights have been gained on the physics behind ice crystal icing of turbofan engines. Additionally, the results of various test campaigns have been used to validate engine ice accretion numerical codes. This paper summarizes the key insights into ICI of turbofans gained from the ICE-MACR to date.
Technical Paper

NRC Particle Detection Probe: Results and Analysis from Ground and Flight Tests

2019-06-10
2019-01-1933
High altitude ice crystals are causing in-service events in excess of one per month for commercial aircraft. The effects include air data probes malfunctioning (pitot pressure and total air temperature in particular), and uncommanded engine power loss or flameout events. The National Research Council Canada (NRC) has developed a particle detection probe (PDP) that mounts on the fuselage of aircraft to sense and quantify the ice crystals in the environment. The probe is low-power and non-intrusive. This paper presents the results of ground and flight testing of this probe. Results are presented for ground testing in a sea level ice crystal wind tunnel and an altitude icing tunnel capable of generating both ice crystal and super-cooled liquid. The PDP was operated on several flight campaigns and the results of two will be presented.
Technical Paper

Mechanical Property Behaviour of Rheocast 319 Alloys with and without Iron Additions

2011-04-12
2011-01-1089
Cast aluminum-silicon alloys have witnessed a notable increase in use in the automotive and transport industry. The ability of these alloys to be easily cast into complex shapes coupled with a favorable strength-to-weight ratio has given them an edge over cast irons. One particular area of casting which has received further and further attention is the area of semi-solid casting, where an alloy casting is prepared as slurry with flow properties that resemble both solid and liquid. In the present work, the effects of iron additions on the mechanical properties of a 319 semi-solid alloy were studied. This alloy was prepared using the SEED process, as developed by Rio Tinto Alcan in collaboration with the Aluminum Technology Centre of NRC Canada. The SEED (Swirled Enthalpy Equilibration Device) process is a novel rheocasting method which yields a semi-solid slurry from the mechanical stirring and cooling of the molten aluminum.
Journal Article

Measurement of the On-Road Turbulence Environment Experienced by Heavy Duty Vehicles

2014-09-30
2014-01-2451
Terrestrial winds play an important role in affecting the aerodynamics of road vehicles. Of increasing importance is the effect of the unsteady turbulence structure of these winds and their influence on the process of optimizing aerodynamic performance to reduce fuel consumption. In an effort to predict better the aerodynamic performance of heavy-duty vehicles and various drag reduction technologies, a study was undertaken to measure the turbulent wind characteristics experienced by heavy-duty vehicles on the road. To measure the winds experienced on the road, a sport utility vehicle (SUV) was outfitted with an array of four fast-response pressure probes that could be arranged in vertical or horizontal rake configurations that provided measurements up to 4.0 m from the ground and spanning a width of 2.4 m. To characterize the influence of the proximity of the vehicle on the pressure signals of the probes, the SUV and its measurements system was calibrated in a large wind tunnel.
X