Refine Your Search

Topic

Author

Search Results

Technical Paper

The Effect of Intake, Injection Parameters and Fuel Properties on Diesel Combustion and Emissions

2003-05-19
2003-01-1793
To improve urban air pollution, stringent emissions regulations for heavy-duty diesel engines have been proposed and will become effective in Japan, the EU, and the United States in a few years. To comply with such future regulations, it is critical to investigate the effects of intake and injection parameters and fuel properties on engine performance, efficiency and emissions characteristics, associated with the use of aftertreatment systems. An experimental study was carried out to identify such effects. In addition, the KIVA-3 code was used to gain insight into cylinder events. The results showed improvements in NOx-Smoke and BSFC trade-offs at high-pressure injection in conjunction with EGR and supercharging.
Technical Paper

Studies on Spray and Combustion Characteristics of Throttle Type Nozzle Used in a Swirl-Chamber Diesel Engine

2022-01-09
2022-32-0068
Among industrial engines, vortex chamber diesel engines are mainly used in small engines with output of less than 19 kW, and they employ an indirect injection system in which fuel is injected into a sub-chamber called a vortex chamber. The throttle-type nozzle used in swirl-chamber diesel engines is expected to change its spraying behavior depending on ambient conditions because the pressure fluctuations in the nozzle cause the needle valve to lift, and the injection amount is controlled by the amount of lift of the needle valve. In addition, the dimensions of the vortex chamber of a vortex chamber diesel engine are smaller than the spray development distance, and wall impingement of the spray is expected. In this study, spraying and combustion experiments were conducted using a constant volume chamber to understand the behavior of the spray from a throttle-type nozzle.
Technical Paper

Numerical Studies on Temporal and Spatial Distribution of Equivalence Ratio in Diesel Combustion Using Large Eddy Simulation

2020-01-24
2019-32-0599
To identify ways of achieving good mixture formation and heat release in diesel spray combustion, we have performed Large Eddy Simulation (LES) using a detailed chemical reaction mechanism to study the temporal and spatial distribution of the local equivalence ratios and heat release rate. Here we characterize the effect of the fuel injection rate profile on these processes in the combustion chamber of a diesel engine. Two injection rate profiles are considered: a standard (STD) profile, which is a typical modern common rail injection profile, and the inverse delta (IVD) profile, which has the potential to suppress rich mixture formation in the spray tip region. Experimental data indicate that the formation of such mixtures may extend the duration of the late combustion period and thus reduce thermal efficiency.
Technical Paper

New Combustion System of the IDI Diesel Engine

1984-09-01
841081
Increasing the degree of constant volume of heat release, combustion efficiency and reducing the heat losses are of utmost importance to improving the fuel economy of the indirect injection (IDI) diesel engine. The authors closely analyzed the flow characteristics of the jet passage and the jet in the main chamber, and successfully devised a new combustion system which features a refined jet passage. The new combustion system offers the optimum discharge coefficient of the jet passage and improved diffusion and penetration of jet in the main chamber. Installed in a Mitsubishi S4E2 diesel engine (swirl-chamber system and four cylinders of 98 mm bore and 98 mm stroke each) and tested, the new combustion system was proven to reduce the engine fuel consumption, smoke emission, and noise.
Technical Paper

Mixture formation and combustion characteristics of directly injected LPG spray

2003-05-19
2003-01-1917
It has been recognized that alternative fuels such as liquid petroleum gas (LPG) has less polluting combustion characteristics than diesel fuel. Direct-injection stratified-charge combustion LPG engines with spark-ignition can potentially replace conventional diesel engines by achieving a more efficient combustion with less pollution. However, there are many unknowns regarding LPG spray mixture formation and combustion in the engine cylinder thus making the development of high-efficiency LPG engines difficult. In this study, LPG was injected into a high pressure and temperature atmosphere inside a constant volume chamber to reproduce the stratification processes in the engine cylinder. The spray was made to hit an impingement wall with a similar profile as a piston bowl. Spray images were taken using the Schlieren and laser induced fluorescence (LIF) method to analyze spray penetration and evaporation characteristics.
Journal Article

Miller-PCCI Combustion in an HSDI Diesel Engine with VVT

2008-04-14
2008-01-0644
A variable valve timing (VVT) mechanism has been applied in a high-speed direct injection (HSDI) diesel engine. The effective compression ratio (εeff) was lowered by means of late intake valve closing (LIVC), while keeping the expansion ratio constant. Premixed charge compression ignition (PCCI) combustion, adopting the Miller-cycle, was experimentally realized and numerically analyzed. Significant improvements of NOx and soot emissions were achieved for a wide range of engine speeds and loads, frequently used in a transient mode test. The operating range of the Miller-PCCI combustion has been expanded up to an IMEP of 1.30 MPa.
Technical Paper

Machine Learning Application to Predict Turbocharger Performance under Steady-State and Transient Conditions

2021-09-05
2021-24-0029
Performance predictions of advanced turbocharged engines are becoming difficult because conventional engine models are built using performance map data of turbochargers with a proportional integral derivative (PID) controller. Improving prediction capabilities under transient test cycles or real driving conditions is a challenging task. This study applies a machine learning technique to predict turbocharger performances with high accuracy under steady-state and transient conditions. The manipulated signals of engine speed and torque created based on Compressed High-Intensity Radiated Pulse (Chirp signal) and Amplitude-modulated Pseudo-Random Binary Signal (APRBS) are used as inputs to the engine testbed. Data from the engine experiments are used as training data for the AI-based turbocharger model. High prediction accuracy of the AI turbocharger model is achieved with the co-efficient of determination in the model, and cross-validation results are higher than 0.8.
Technical Paper

Improving the Detection Accuracy of a Static Software Quality Evaluation Tool

2003-03-03
2003-01-0140
There are various standards to evaluate the quality of software. Tools to quantatively evaluate the quality of software have become available in recent year. Although these tools are effective, warning reports can become extensive, when the volume of software becomes large. And, the manpower to confirm the report also becomes large. Knowledge and experience are to analyze the warning report. Consequently, an oversight, a misapprehension, etc. may arise. To solve this problem, we are examining system to automate this work.
Technical Paper

Improvements in Diesel Combustion with After-Injection

2008-10-06
2008-01-2476
The effect of after-injection on exhaust gas emissions from a DI diesel engine with a common rail injection system was experimentally investigated for a range of operating conditions. The results showed that over the whole of the operating range, some reduction in smoke emissions can be achieved with after-injection, without deterioration in thermal efficiency and other emission characteristics. The optimum quantity of after-injection for smoke reduction is 20% of the total fuel supply, and the optimum timing is just after the main injection. Visualization in a bottom view type engine showed that with after-injection, soot formation in the main-injection decrease more due to a smaller quantity of fuel than without after-injection, and soot formation with after-injection is insignificant.
Technical Paper

Improvement of NOx Reduction Rate of Urea-SCR System by NH3 Adsorption Quantity Control

2008-10-06
2008-01-2498
A urea SCR system was combined with a DPF system to reduce NOx and PM in a four liters turbocharged with intercooler diesel engine. Significant reduction in NOx was observed at low exhaust gas temperatures by increasing NH3 adsorption quantity in the SCR catalyst. Control logic of the NH3 adsorption quantity for transient operation was developed based on the NH3 adsorption characteristics on the SCR catalyst. It has been shown that NOx can be reduced by 75% at the average SCR inlet gas temperature of 158 deg.C by adopting the NH3 adsorption quantity control in the JE05 Mode.
Technical Paper

Improvement of Combustion and Exhaust Gas Emissions in a Passenger Car Diesel Engine by Modification of Combustion Chamber Design

2006-10-16
2006-01-3435
Three types of combustion chamber configurations (Types A, B, and C) with compression ratio lower than that of the baseline were tested for improved performance and exhaust gas emissions from an inline-four-cylinder 1.7-liter common-rail diesel engine manufactured for use with passenger cars. First, three combustion chambers were examined numerically using CFD code. Second, engine tests were conducted by using Type B combustion chamber, which is expected to have the best performance and exhaust gas emissions of all. As a result, 80% of NOx emissions at both low and medium loads at 1500 rpm, the engine speed used frequently in the actual city driving, improved with nearly no degradation in smoke emissions and brake thermal efficiency. It was shown that a large amount of cooled EGR enables NOx-free combustion with long ignition delay.
Technical Paper

Ignition and Combustion Control of Diesel HCCI

2005-05-11
2005-01-2132
Homogeneous Charge Compression Ignition (HCCI) is effective for the simultaneous reduction of soot and NOx emissions in diesel engine. In general, high octane number fuels (gasoline components or gaseous fuels) are used for HCCI operation, because these fuels briefly form lean homogeneous mixture because of long ignition delay and high volatility. However, it is necessary to improve injection systems, when these high octane number fuels are used in diesel engine. In addition, the difficulty of controlling auto-ignition timing must be resolved. On the other hand, HCCI using diesel fuel (diesel HCCI) also needs ignition control, because diesel fuel which has a low octane number causes the early ignition before TDC. The purpose of this study is the ignition and combustion control of diesel HCCI. The effects of parameters (injection timing, injection pressure, internal/external EGR, boost pressure, and variable valve timing (VVT)) on the ignition timing of diesel HCCI were investigated.
Technical Paper

High Thermal Efficiency Obtained with a Single-Point Autoignition Gasoline Engine Prototype Having Pulsed Supermulti-Jets Colliding in an Asymmetric Double Piston Unit

2016-10-17
2016-01-2336
A single-point autoignition gasoline engine (Fugine) proposed by us previously has a strongly asymmetric double piston unit without poppet valves, in which pulsed multi-jets injected from eight suction nozzles collide around the combustion chamber center. Combustion experiments conducted on this engine at a low operating speed of 2000 rpm using gasoline as the test fuel under lean burn conditions showed both high thermal efficiency comparable to that of diesel engines and silent combustion comparable to that of conventional spark-ignition gasoline engines. This gasoline engine was tested with a weak level of point compression generated by negative pressure of about 0.04 MPa and also at an additional mechanical homogeneous compression ratio of about 8:1 without throttle valves. After single-point autoignition, turbulent flame propagation may occur at the later stage of heat release.
Technical Paper

Fundamental Combustion Experiments of a Piston-Less Single-Point Autoignition Gasoline Engine Based on Compression Due to Colliding of Pulsed Supermulti-Jets

2016-10-17
2016-01-2337
Computational and theoretical analyses for a new type of engine (Fugine), which was proposed by us based on the colliding of pulsed supermulti-jets, indicate a potential for very high thermal efficiencies and also less combustion noise. Three types of prototype engines were developed. One of them has a low-cost gasoline injector installed in the suction port and a double piston system in which eight octagonal supermulti-jets are injected and collide. Combustion experiments conducted on the prototype gasoline engine show high thermal efficiency comparable to that of diesel engines and less combustion noise comparable to that of traditional spark-ignition gasoline engines. This paper presents some combustion experiments of one of the other piston-less prototype engines having bi-octagonal pulsed multi-jets injected from fourteen nozzles.
Technical Paper

Flow Investigation of a Centrifugal Compressor for Automotive Turbochargers

1998-02-23
980771
To improve the performance of the centrifugal compressor for automotive turbocharger, it is essential to understand the complicated flow phenomena caused by its complex blade geometry. Authors carried out the detailed flow measurement of the centrifugal compressor impeller uisng Laser Doppler Velocimeter (LDV). The test impeller is a 9.1 times enlarged model of real turbocharger. In result authors found out the low velocity region is grown up at the suction surface of the inducer according to the reduction of flow rate. The experimental data are compared with the three dimensional (3D) viscous flow analysis and acceptable agreement was observed.
Technical Paper

Experimental and Simulation Analysis of Spray and Combustion Characteristics in a Swirl-Chamber Diesel Engine

2022-08-30
2022-01-1049
A swirl-chamber diesel engine has an indirect injection system in which fuel is injected into a pre-chamber called the swirl-chamber that is separated from the main chamber. Indirect fuel injection systems can be directly mechanically controlled by the camshaft, which is cheaper than electronic control. For these reasons, they are used in diverse industrial applications and automobiles. However, optimization of the swirl-chamber shape and performance tests have been mainly experimental, and there has been insufficient verification of the accuracy of simulations. Thus, we have attempted to verify simulations using a rapid compression and expansion machine that can reproduce the combustion in one engine cycle, with a chamber like a swirl chamber in the cylinder head to visualize the behavior of evaporative sprays and the combustion process. In this study, the authors focused on the wall impingement of the fuel spray and took photos of its liquid phase and ignition.
Technical Paper

Experimental and Numerical Investigations of Emission Characteristics from Diesel-Ammonia-Fueled Industry Engines

2023-09-29
2023-32-0064
Combustion and emission characteristics of diesel- ammonia-fueled internal combustion engines were obtained by simulation and experiment with a multi- cylinder industry engine to reduce nitrous oxide, N2O, emission which has high global warming potential. The test engine was based on 4-stroke-cycle diesel engine with common rail injection system and ammonia gas was introduced in intake air. Simulation result by combustion CFD with detailed chemistry showed N2O remains at unburned ammonia-air mixture region, and simultaneous reduction of both N2O and unburned ammonia has been expected in high in-cylinder temperature. The test result showed unburned ammonia reduced along with increased in-cylinder temperature in high equivalence ratio and advanced injection timing conditions.
Technical Paper

Experimental and 3D-CFD Analysis of Synthetic Fuel Properties on Combustion and Exhaust Gas Emission Characteristics in Heavy-Duty Diesel Engines

2023-08-28
2023-24-0052
Synthetic fuels can significantly improve the combustion and emission characteristics of heavy-duty diesel engines toward decarbonizing heavy-duty propulsion systems. This work analyzes the effects of engine operating conditions and synthetic fuel properties on spray, combustion, and emissions (soot, NOx) using a supercharging single-cylinder engine experiment and KIVA-4 code combined with CHEMKIN-II and in-house phenomenological soot model. The blended fuel ratio is fixed at 80% diesel and 20% n-paraffin by volume (hereafter DP). Diesel, DP1 (diesel with n-pentane C5H12), DP2 (diesel with n-hexane C6H14), and DP3 (diesel with n-heptane C7H16) are used in engine-like-condition constant volume chamber (CVC) and engine experiments. Boosted engine experiments (1080 rpm, common-rail injection pressure 160 MPa, multi-pulse injection) are performed using the same DP fuel groups under various main injection timings, pulse-injection intervals, and EGR = 0-40%.
Technical Paper

Experimental Study on Unregulated Emission Characteristics of Turbocharged DI Diesel Engine with Common Rail Fuel Injection System

2003-10-27
2003-01-3158
In this study, we selected four unregulated emissions species, formaldehyde, benzene, 1,3-butadiene and benzo[a]pyrene to research the emission characteristics of these unregulated components experimentally. The engine used was a water-cooled, 8-liter, 6-cylinder, 4-stroke-cycle, turbocharged DI diesel engine with a common rail fuel injection system manufactured for the use of medium-duty trucks, and the fuel used was JIS second-class light gas oil, which is commercially available as diesel fuel. The results of experiments indicate as follows: formaldehyde tends to be emitted under the low load condition, while 1,3-butadiene is emitted at the low engine speed. This is believed to be because 1,3-butadiene decomposes in a short time, and the exhaust gas stays much longer in a cylinder under the low speed condition than under the high engine speed one. Benzene is emitted under the low load condition, as it is easily oxidized in high temperature.
Technical Paper

Experimental Study of Spark-Assisted Auto-Ignition Gasoline Engine with Octagonal Colliding Pulsed Supermulti-Jets and Asymmetric Double Piston Unit

2018-10-30
2018-32-0004
Much effort has been devoted to studies on auto-ignition engines of gasoline including homogeneous-charge combustion ignition engines over 30 years, which will lead to lower exhaust energy loss due to high-compression ratio and less dissipation loss due to throttle-less device. However, the big problem underlying gasoline auto-ignition is knocking phenomenon leading to strong noise and vibration. In order to overcome this problem, we propose the principle of colliding pulsed supermulti-jets. In a prototype engine developed by us, octagonal pulsed supermulti-jets collide and compress the air around the center point of combustion chamber, which leads to a hot spot area far from chamber walls. After generating the hot spot area, the mechanical compression of an asymmetric double piston unit is added in four-stroke operation, which brings auto-ignition of gasoline.
X