Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Possibility for Realization of Dual Combustion Cycle for Spark Ignition Engine

2017-11-05
2017-32-0091
The purpose of this study is to operate the spark ignition engine by the dual combustion cycle. The dual combustion cycle has two combustion processes, these are the constant volume combustion and the constant pressure combustion. The lean combustion and the direct fuel injection were applied to realize the dual combustion cycle for spark ignition engines. The combustion of lean mixture was corresponding to the constant volume combustion. The fuel was directly injected to combustion chamber and was burned with the remained oxygen after the lean combustion, so that this was corresponding to the constant pressure diffusion combustion. The combustion experiments were conducted by using the constant volume vessel. The lean propane-air mixture of which equivalence ratios were 0.6, 0.7, 0.8 and 0.9 were used and liquid n-heptane was injected by using the high-voltage electrical discharge.
Journal Article

The Influence of Hot Gas Jet on Combustion Enhancement for Lean Mixture in Plasma Jet Ignition

2012-10-23
2012-32-0001
This study clarified the influence of hot gas jet on combustion enhancement effect for lean mixture in the plasma jet ignition. The hot gas jet was generated by the high temperature plasma and was ejected from igniter after plasma jet finished issuing. In combustion tests, propane-air mixture at equivalence ratio of 0.6 was used and the mixture was filled in the combustion chamber at atmosphere pressure and room temperature. For generation of the hot gas jet, the standard air was filled in chamber at same conditions and the hot gas jet was visualized by schlieren method in the absence of combustion. The combustion development processes were also visualized and the combustion pressure was measured. The discharge voltage, discharge current and the plasma luminescence were also measured. The plasma luminescence disappeared within 0.05 ms for any experimental conditions. When cavity depth was deep and orifice diameter was small, the maximum plasma luminescence height was short.
Technical Paper

The Influence of High Voltage Electrical Field on the Flame Propagation

2005-10-12
2005-32-0074
The purpose of this study is to elucidate the development process of hot kernel generated by the laser induced breakdown and to clarify the relationship between corona discharge application and flame propagation. The mixture can be ignited by the laser induced breakdown. Nd:YAG laser is used for the ignition and laser light is optically focused on the central part of combustion chamber by a plano convex lens. The hot kernel is observed in the absence of combustion and is rapidly developed into the laser incidence side. The homogeneous propane-air mixture is used and six equivalence ratios between 0.7 and 1.5 are tested. For generating the positive corona discharge in the combustion chamber, a non-uniform electric field is applied by the needle to plane gap. In a lean mixture, the whole flame front shifts to downward from the breakdown point and, in the rich mixture region, the combustion is strongly enhanced.
Technical Paper

The Effects of the Compression Ratio, Equivalence Ratio, and Intake Air Temperature on Ignition Timing in an HCCI Engine Using DME Fuel

2005-10-12
2005-32-0002
Attention has recently been focused on homogeneous charge compression ignition combustion (HCCI) as an effective combustion process for resolving the essential nature of combustion. Meanwhile, dimethylether (DME) has attracted interest as a potential alternative fuel for compression ignition engines. Authors measured the combustion process of DME HCCI by using a spectroscopic method. A diesel engine was used as the test engine. The results of these analyses showed that changes in the compression ratio, intake air temperature and equivalence ratio influenced the ignition timing in the HCCI combustion process. This paper discusses these effects in reference to the experimental and calculated results.
Technical Paper

The Effect of Ashless Additives for Non-Phosphorus and Non-Ash Engine Oil on Piston Detergency

2015-09-01
2015-01-2031
Recently, deposition of ash derived from engine oil on the surface of a diesel particle filter (DPF) has been reported to worsen the performance of the DPF. It is generally known that phosphorus in engine oil is adsorbed on the surface of an automotive exhaust catalyst and reduces the performance of the catalyst. Thus, the amounts of ash and phosphorus in engine oil have been decreased. We have developed a non-phosphorus and non-ash engine oil (NPNA) that does not contain metal-based detergents and zinc dialkyldithiophosphate (ZnDTP). We performed a performance test for NPNA using an actual engine and reported that the piston detergency and anti-wear performance of NPNA were sufficiently high. However, the piston detergency of NPNA required further improvement when engine running conditions were more severe.
Technical Paper

The Development of Lubricating Oils for Rotary Racing Engines

1992-10-01
922375
In order to achieve the highest power output and lowest fuel consumption for the rotary engine in endurance race such as Le Mans, two types of lubricating oils were developed by conducting a single - rotor engine test at the rotational speed of 7500 rpm under full load. One was the engine oil for the lubrication of the combustion chamber. The other was a so - called system oil for lubrication of the engine system outside the combustion chamber. The conclusions obtained from the development are as follows: 1) Engine oil for the combustion chamber The engine oil greatly influences spitback phenomenon1) which can cause rotary engine trouble in an endurance race. The spitback phenomenon is decreased by the decrease of carbonaceous deposit and ash in the apex seal grooves.
Technical Paper

Study on Realization of Dual Combustion Cycle by Lean Mixture and Direct Fuel Injection

2018-10-30
2018-32-0011
The purpose of this study is to realize dual-combustion cycle for gasoline engines. For the purpose, lean combustion and direct fuel injection were applied to small diesel engine. The lean gasoline-air mixture was provided and was ignited by small amount of pilot diesel fuel injection (constant volume combustion). Then, diesel fuel was injected by main injection and was burned with the remained oxygen after the lean combustion (diffusion combustion). The equivalence ratio 0.3, 0.4 and 0.5 of mixture were used to avoid the spontaneous compression auto-ignition. The total equivalence ratio with supplied gasoline and diesel fuel was adjusted to 1.0. The base pilot injection timing was selected as the ignition of pre-mixture took place at T.D.C. and pilot injection timings were changed 2 degree before and behind of base timing. The main fuel injection timings were 50, 75 and 100% of the duration between pilot injection timing and T.D.C.
Technical Paper

Study on Knocking Intensity and Autoignitive Propagation Velocity with the Same Methane Number Mixtures of Methane/Ethane and Methane/n-Butane

2023-10-24
2023-01-1803
Although methane number is widely used to predict knocking occurrence and its intensity, it does not determine a fuel composition uniquely, that means, the knocking intensity by the different composition fuel must show difference even if the same methane number fuels are employed. To establish a novel index, the knocking intensity and the autoignitive propagation velocity, as consequence of spontaneous ignition process, are investigated both experimentally and numerically by using the different composition gaseous fuels with same methane number. Methane/ethane/air and methane/n-butane/air mixtures with the same methane number of 70 and the equivalence ratio of 0.5 were employed. They are rapidly compressed and ignited spontaneously by a Rapid Compression Machine. Ignition delay times, autoignitive propagation velocities, and knocking intensity were measured by acquired pressure histories and high-speed imaging.
Technical Paper

Study on Knocking Characteristics for High-Efficiency Operation of a Super-Lean Spark Ignition Engine

2018-10-30
2018-32-0002
This study investigated the influence of EGR and spark advance on knocking under high compression ratio, ultra-lean mixture and supercharged condition using premium gasoline as a test fuel. A high-compression ratio, supercharged single cylinder engine was used in this experiment. As a result, the period from ignition to autoignition was prolonged. In addition, knock intensity was drastically reduced. In other words, it is inferred that by combining an appropriate amount of EGR and spark advance, high efficiency operation avoiding knocking can be realized.
Technical Paper

Study on Combustion and Exhaust Gas Emission Characteristics of Lean Gasoline-Air Mixture Ignited by Diesel Fuel Direct Injection

1998-10-19
982482
The uniform lean gasoline-air mixture was provided to diesel engine and was ignited by direct diesel fuel injection. The mixing region that is formed by diesel fuel penetration and entrainment of ambient mixture is regarded as combustible turbulent jet. The ignition occurs in this region and the ambient lean mixture is burned by flame propagation. The lean mixture of air-fuel ratio between 150 and 35 could be ignited and burned by this ignition method. An increase of diesel fuel injection is effective to ensure combustion and ignition. As diesel fuel injection increases, HC concentration decreases, and NOx and CO concentration increases.
Technical Paper

Study of Supercharged Gasoline HCCI Combustion by Using Spectroscopic Measurements and FT-IR Exhaust Gas Analysis

2014-11-11
2014-32-0004
One issue of Homogeneous Charge Compression Ignition (HCCI) engines that should be addressed is to suppress rapid combustion in the high-load region. Supercharging the intake air so as to form a leaner mixture is one way of moderating HCCI combustion. However, the specific effect of supercharging on moderating HCCI combustion and the mechanism involved are not fully understood yet. Therefore, experiments were conducted in this study that were designed to moderate rapid combustion in a test HCCI engine by supercharging the air inducted into the cylinder. The engine was operated under high-load levels in a supercharged state in order to make clear the effect of supercharging on expanding the stable operating region in the high-load range. HCCI combustion was investigated under these conditions by making in-cylinder spectroscopic measurements and by analyzing the exhaust gas using Fourier transform infrared (FT-IR) spectroscopy.
Technical Paper

Study of Pre-chamber Jet Combustion Behavior using a Small Two-stroke Optically Accessible Engine

2022-01-09
2022-32-0076
A small 2-stroke engine can be an effective power source for an electric generator mounted on a series hybrid electric vehicle. In recent years, a technology referred to as pre-chamber jet combustion has attracted attention as a means of enhancing thermal efficiency by improving mixture ignitability. In this study, experiments were conducted to investigate differences in combustion behavior between the application of spark-ignited (SI) combustion and pre-chamber jet combustion to a small, two-stroke engine. The experimental equipment used was a two-stroke, single-cylinder, optically accessible engine with a displacement of 63.3 cm3. Differences between conventional SI combustion and pre-chamber jet combustion were examined by means of in-cylinder pressure analysis, in-cylinder combustion visualization and image processing software. The diameter of the connecting orifice of the pre-chamber was varied between two types.
Technical Paper

Study of Lower Viscosity Motorcycle Engine Oils for Fuel Saving-Anti-fatigue Performance-

2011-11-08
2011-32-0634
1 Fuel savings by engine oil have been requested for two-wheeled vehicles from the viewpoint of environmental issues. In four-wheeled vehicles, reduction of oil viscosity and addition of friction modifiers have been effective in improving fuel efficiency. However, direct application of engine oil for four-wheeled vehicles to two-wheeled vehicles is difficult. In a four-cycle two-wheeled vehicle, the transmission, gears, and a wet clutch system are imbedded within the engine1). Engine oil must display a remarkable performance as it is required to function as transmission oil and to improve anti-metal fatigue life and clutch performance2), 3). If fuel efficiency is improved by reducing the viscosity of engine oil used in two-wheeled vehicles, the fatigue life tends to worsen. Therefore, reduction in oil viscosity is difficult to achieve.
Technical Paper

Steric Effects on Tribochemical Reactivity in Detergent-Containing Lubricants under Nanoconfinement

2017-10-08
2017-01-2347
Modern formulation in a wide variety of lubricants including engine oils and transmission fluids is designed to control friction through film-forming tribochemical reactions induced by the functional additives mixtures. Although many cases on the synergistic or antagonistic effects of additives on friction have been reported, their mechanisms are poorly understood. This study focused on the influences of metallic detergents on tribochemical reactions. We examined the mechanical properties of detergent-containing lubricants confined at a single-asperity contact and their contributions to tribochemical phenomena. We found that detergents enlarged the confinement space required for generating repulsive force and shear resistance. This means that these detergents provide steric effects under nanoconfinement at interfacial contacts.
Technical Paper

Spectroscopic Measurement of OH Radical Emission Behavior Using a 2-Cycle Engine

1997-10-27
978515
The aim of this research was to investigate the mechanism causing autoignition and the effect of exhaust gas recirculation (EGR) on combustion by detecting the behavior of the OH radical and other excited molecules present in the flame in a spark ignition engine. The test equipment used was a 2-cycle engine equipped with a Schnürle scavenging system. Using emission spectroscopy, the behavior of the OH radical was measured at four locations in the end zone of the combustion chamber. The OH radical plays an important role in the elemental reactions of hydrocarbon fuels. When a certain level of EGR was applied according to the engine operating conditions, the unburned gas became active owing to heat transfer from residual gas near the measurement positions on the exhaust port side and the influence of excited species in the residual gas, and autoignition tended to occur.
Technical Paper

Simultaneous Analysis of Light Absorption and Emission in Preflame Reactions under Knocking Operation

2000-01-15
2000-01-1416
The study deals with the light absorption and emission behavior in the preflame reaction interval before hot flame reactions.(1-3) Absorption spectroscopy was used to measure the behavior of HCHO and OH radicals during a progression from normal combustion to knocking operation. Emission spectroscopic measurements were obtained in the same way that radical added HCO. Radical behavior in preflame reactions was thus examined on the basis of simultaneous measurements, which combined each absorption wavelength with three emission wavelength by using a monochromator and a newly developed polychromator.(4-5) When n-heptane (0 RON) and blended fuel (50 RON) were used as test fuel, it was observed that radical behavior differed between normal combustion and knocking operation and a duration of the preflame reaction was shorter during the progression from normal combustion to a condition of knocking.
Technical Paper

Relationship between Plasma Jet and Newly Developed Plasma Jet Igniter

1998-10-19
982564
In plasma jet ignition, combustion enhancement effects are caused toward the plasma jet issuing direction. Therefore, when the igniter is attached at the center of cylindrically shaped combustion chamber, the plasma jet should issues toward the round combustion chamber wall. The plasma jet igniter that had a concentric circular orifice has been developed. It is expected that the plasma jet is issued and is diffused from concentric circular orifice toward the combustion chamber wall. Relationship between plasma jet and igniter configuration was experimentally clarified. Plasma jet can issue from the entire concentric circular orifice for some igniter. Plasma jet is extended with increasing concentric circular orifice area. Plasma jet penetration increases with increasing concentric circular orifice width.
Technical Paper

Piston Detergency and Anti-Wear Performance of Non-Phosphorus and Non-Ash Engine Oil

2019-01-15
2019-01-0021
The deposition of ash derived from engine oil on the surface of diesel particle filters (DPF) has recently been reported to degrade the performance of the DPF. It is generally known that phosphorus in engine oil is adsorbed on the surface of an automotive exhaust catalyst, reducing the performance of the catalyst. Thus, the amounts of ash and phosphorus in engine oil have been decreased. We have developed a non-phosphorus, non-ash engine oil (NPNA) that does not contain metal-based detergents or zinc dialkyldithiophosphate (ZnDTP). Various engine tests were performed, and we confirmed that under normal running conditions, the NPNA oil had a sufficiently high piston detergency and wear resistance-two important requirements for engine oil-to meet current American and Japanese standards. However, the piston detergency of NPNA required further improvement when engine running conditions were more severe.
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP (Part II)

2009-11-03
2009-32-0080
As well as a four-wheeled vehicle, in the field of motorcycle, development of the CO2 reduction technology and practical use are required for global environment. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Ito1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods: JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP

2008-09-09
2008-32-0005
Just as CO2 reduction is required of four wheeled vehicles for environmental protection, similar environmental concerns drive the development of motorcycle oil technology. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Mr. Ito and his co-authors1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods:JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
X