Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine

2008-10-06
2008-01-2501
This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NOx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NOx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NOx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%).
Technical Paper

Selective Catalytic Reduction of NOx Emissions from a 5.9 Liter Diesel Engine Using Ethanol as a Reductant

2003-10-27
2003-01-3244
NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400°C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.
Technical Paper

Resolving EGR Distribution and Mixing

2002-10-21
2002-01-2882
A minimally invasive spatially resolved capillary inlet mass spectrometer has been used to quantify EGR/air mixing in a Cummins V-8 medium-duty diesel engine. Two EGR-system hardware designs were evaluated in terms of EGR-air mixing at the intake manifold inlet and port-to-port EGR charge uniformity. Performance was assessed at four modalized-FTP engine conditions. One design is found to be considerably better, particularly at three of the four engine conditions. Specific questions such as the effect of maximizing mass air flow on EGR mixing, and if particular cylinders are EGR starved are investigated. The detailed performance characteristics suggest areas to focus improvement efforts, and serve as a foundation for identifying the non-uniformity EGR barriers and origins.
Technical Paper

Particulate Matter and Aldehyde Emissions from Idling Heavy-Duty Diesel Trucks

2003-03-03
2003-01-0289
As part of a multi-agency study concerning emissions and fuel consumption from heavy-duty diesel truck idling, Oak Ridge National Laboratory personnel measured CO, HC, NOx, CO2, O2, particulate matter (PM), aldehyde and ketone emissions from truck idle exhaust. Two methods of quantifying PM were employed: conventional filters and a Tapered Element Oscillating Microbalance (TEOM). A partial flow micro-dilution tunnel was used to dilute the sampled exhaust to make the PM and aldehyde measurements. The work was performed at the U.S. Army's Aberdeen Test Center's (ATC) climate controlled chamber. ATC performed 37 tests on five class-8 trucks (model years ranging from 1992 to 2001). One was equipped with an 11 hp diesel auxiliary power unit (APU), and another with a diesel direct-fired heater (DFH). The APU powers electrical accessories, heating, and air conditioning, whereas a DFH heats the cab in cold weather. Both devices offer an alternative to extended truck-engine idling.
Technical Paper

Partial Oxidation Products and other Hydrocarbon Species in Diesel HCCI Exhaust

2005-10-24
2005-01-3737
A single cylinder engine was operated in HCCI mode with diesel-range fuels, spanning a range in cetane number (CN) from 34 to 62. In addition to measurements of standard gaseous emissions (CO, HC, and NOx), multiple sampling and analysis techniques were used to identify and measure the individual exhaust HC species including an array of oxygenated compounds. A new analytical method, using liquid chromatography (LC) with electrospray ionization-mass spectrometry (ESI-MS) in tandem with ultraviolet (UV) detection, was developed to analyze the longer chain aldehydes as well as carboxylic acids. Results showed an abundance of formic and butyric acid formation at or near the same concentration levels as formaldehyde and other aldehydes.
Journal Article

Mixed-Source EGR for Enabling High Efficiency Clean Combustion Modes in a Light-Duty Diesel Engine

2008-04-14
2008-01-0645
The source of exhaust gas recirculation (EGR), and consequently composition and temperature, has a significant effect on advanced combustion modes including stability, efficiency, and emissions. The effects of high-pressure loop EGR (HPL EGR) and low-pressure loop EGR (LPL EGR) on achieving high efficiency clean combustion (HECC) modes in a light-duty diesel engine were characterized in this study. High dilution operation is complicated in real-world situations due to inadequate control of mixture temperature and the slow response of LPL EGR systems. Mixed-source EGR (combination of HPL EGR and LPL EGR) was investigated as a reasonable approach for controlling mixture temperature. The potential of mixed-source EGR has been explored using LPL EGR as a ‘base’ for dilution rather than as a sole source. HPL EGR provides the ‘trim’ for controlling mixture temperature and has the potential for enabling precise control of dilution targets.
Technical Paper

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

2010-10-25
2010-01-2206
In-cylinder fuel blending of gasoline with diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 5.5 bar net mean effective pressure (NMEP). Gasoline was introduced with a port-fuel-injection system.
Journal Article

Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst

2008-10-06
2008-01-2467
Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NOx emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that a range of HCs from C15 - C25 were deposited and retained in the surrogate tubes.
Technical Paper

Hydrocarbon Selective Catalytic Reduction Using a Silver-Alumina Catalyst with Light Alcohols and Other Reductants

2005-04-11
2005-01-1082
Previously reported work with a full-scale ethanol-SCR system featuring a Ag-Al2O3 catalyst demonstrated that this particular system has potential to reduce NOx emissions 80-90% for engine operating conditions that allow catalyst temperatures above 340°C. A concept explored was utilization of a fuel-borne reductant, in this case ethanol “stripped” from an ethanol-diesel micro-emulsion fuel. Increased tailpipe-out emissions of hydrocarbons, acetaldehyde and ammonia were measured, but very little N2O was detected. In the current increment of work, a number of light alcohols and other hydrocarbons were used in experiments to map their performance with the same Ag-Al2O3 catalyst. These exploratory tests are aimed at identification of compounds or organic functional groups that could be candidates for fuel-borne reductants in a compression ignition fuel, or could be produced by some workable method of fuel reforming.
Journal Article

Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

2009-11-02
2009-01-2769
The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and1H/13C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT™) apparatus.
Technical Paper

Fuel Property Effects on Emissions from High Efficiency Clean Combustion in a Diesel Engine

2006-04-03
2006-01-0080
High-efficiency clean combustion (HECC) modes provide simultaneous reductions in diesel particulate matter and nitrogen-oxides emissions while retaining efficiencies characteristic of normal diesel engines. Fuel parameters may have significant impacts on the ability to operate in HECC modes and on the emissions produced in HECC modes. In this study, 3 diesel-range fuels and 2 oxygenated blends are burned in both normal and HECC modes at 3 different engine conditions. The results show that fuel effects play an important role in the emissions of hydrocarbons, particulate matter, and carbon monoxide but do not significantly impact NOx emissions in HECC modes. HECC modes are achievable with 5% biodiesel blends in addition to petroleum-based and oil-sands derived fuels. Soot precursor and oxygenated compound concentrations in the exhaust were observed to generally increase with the sooting tendency of the fuel in HECC modes.
Technical Paper

Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower

2007-10-29
2007-01-3994
Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp (112 kW) on gasoline and a 20% increase to 180 hp (134 kW) on E85 (nominally 85% ethanol, 15% gasoline). While FFVs sold in the U.S. must be emissions certified on Federal Certification Gasoline as well as on E85, the European regulations only require certification on gasoline. Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. Results show that the vehicle's gasoline equivalent fuel economy on the Federal Test Procedure (FTP) and the Highway Fuel Economy Test (HFET) are on par with similar U.S.-legal flex-fuel vehicles.
Technical Paper

Filter-based control of particulate matter from a lean gasoline direct injection engine

2016-04-05
2016-01-0937
New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDI PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal.
Technical Paper

Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion in a Light-Duty Diesel Engine

2009-11-02
2009-01-2669
An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions of 1500rpm, 2.6bar BMEP was chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic content (20 to 45%), and 90% distillation temperature (270 to 340°C). HECC operation was achieved with high levels of exhaust gas recirculation (EGR) and adjusting injection parameters, such as higher fuel rail pressure and single injection event, which is also known as premixed charge compression ignition (PCCI) combustion.
Journal Article

Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

2010-10-25
2010-01-2266
Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOX) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity-controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline-to-diesel fuel that gave the highest engine efficiency and lowest emissions.
Technical Paper

Effect of Narrow Cut Oil Shale Derived Distillates on HCCI Engine Performance

2009-11-02
2009-01-2646
In this investigation, oil shale crude obtained from the Green River Formation in Colorado using Paraho Direct retorting was mildly hydrotreated and distilled to produce 7 narrow boiling point fuels of equal volumes. The resulting derived cetane numbers ranged between 38.3 and 43.9. Fuel chemistry and bulk properties strongly correlated with boiling point. The fuels were run in a simple HCCI engine to evaluate combustion performance. Each cut exhibited elevated NOx emissions, from 150 to 300ppm higher than conventional ULSD under similar conditions. Engine performance and operating range were additionally dictated by distillation temperatures which are a useful predictor variable for this fuel set. In general, cuts with low boiling point achieved optimal HCCI combustion phasing while higher boiling point cuts suffered a 25% fuel economy decrease, compared to conventional diesel under similar HCCI conditions, and incurred heavy engine deposits.
Journal Article

Characterization of Hydrocarbon Emissions from Gasoline Direct-Injection Compression Ignition Engine Operating on a Higher Reactivity Gasoline Fuel

2017-03-28
2017-01-0747
Low temperature combustion engine technologies are being investigated for high efficiency and low emissions. However, such engine technologies often produce higher engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions, and their operating range is limited by the fuel properties. In this study, two different fuels, a US market gasoline containing 10% ethanol (RON 92 E10) and a higher reactivity gasoline (RON 80 E0), were compared on Delphi’s second generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The engine was evaluated at three operating points ranging from a light load condition (800 rpm/2 bar IMEPg) to medium load conditions (1500 rpm/6 bar and 2000 rpm/10 bar IMEPg). The engine was equipped with two oxidation catalysts, between which was located the exhaust gas recirculation (EGR) inlet. Samples were taken at engine-out, between the catalysts, and at tailpipe locations.
Journal Article

Carbonyl Formation during High Efficiency Clean Combustion of FACE Fuels

2010-10-25
2010-01-2212
The low temperature conditions that occur during high efficiency clean combustion (HECC) often lead to the formation of partially oxidized HC species such as aldehydes, ketones and carboxylic acids. Using the diesel fuels specified by the Fuels for Advanced Combustion Engines (FACE) working group, carbonyl species were collected from the exhaust of a light duty diesel engine operating under HECC conditions. High pressure liquid chromatography - mass spectrometry (LC-MS) was used to speciate carbonyls as large as C 9 . A relationship between carbonyl species formed in the exhaust and fuel composition and properties was determined. Data were collected at the optimum fuel efficiency point for a typical road load condition. Results of the carbonyl analysis showed changes in formaldehyde and acetaldehyde formation, formation of higher molecular weight carbonyls and the formation of aromatic carbonyls.
Technical Paper

Assessment of Corrosivity Associated With Exhaust Gas Recirculation in a Heavy-Duty Diesel Engine

2005-04-11
2005-01-0657
A high-resolution corrosion probe was placed within the airhorn section of the exhaust gas recirculation (EGR) loop of a heavy-duty diesel engine. The corrosion rate of the mild-steel probe elements was evaluated as a function of fuel sulfur level, EGR fraction, dewpoint margin, and humidity. No significant corrosion was observed while running the engine using a No. 2 grade, < 15ppm sulfur diesel fuel; however, high corrosion rates were observed with No. 2 diesel fuel (∼350 ppm sulfur) while condensing water in the EGR loop. The rate of corrosion on the mild steel elements increased with increasing levels of sulfate in the condensate. However, the engine conditions influencing the sulfate level were not clearly identified in this study.
Technical Paper

A Thermal Conductivity Approach for Measuring Hydrogen in Engine Exhaust

2004-10-25
2004-01-2908
Thermal conductivity detection has long been used in gas chromatography to detect hydrogen and other diatomic gases in a gas sample. Thermal conductivity instruments that are not coupled to gas chromatographs are useful for detecting hydrogen in binary gas mixtures, but suffer from significant cross-interference from other gas species that are separated when the detector is used with a gas chromatograph. This study reports a method for using a commercially-available thermal conductivity instrument to detect and quantify hydrogen in a diesel exhaust stream. The instrument time response of approximately 40 seconds is sufficient for steady-state applications. Cross-interference from relevant gas species are quantified and discussed. Measurement uncertainty associated with the corrections for the various species is estimated and practical implications for use of the instrument and method are discussed.
X