Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

X-ray Imaging of Cavitation in Diesel Injectors

2014-04-01
2014-01-1404
Cavitation plays a significant role in high pressure diesel injectors. However, cavitation is difficult to measure under realistic conditions. X-ray phase contrast imaging has been used in the past to study the internal geometry of fuel injectors and the structure of diesel sprays. In this paper we extend the technique to make in-situ measurements of cavitation inside unmodified diesel injectors at pressures of up to 1200 bar through the steel nozzle wall. A cerium contrast agent was added to a diesel surrogate, and the changes in x-ray intensity caused by changes in the fluid density due to cavitation were measured. Without the need to modify the injector for optical access, realistic injection and ambient pressures can be obtained and the effects of realistic nozzle geometries can be investigated. A range of single and multi-hole injectors were studied, both sharp-edged and hydro-ground. Cavitation was observed to increase with higher rail pressures.
Technical Paper

X-Ray Radiography and CFD Studies of the Spray G Injector

2016-04-05
2016-01-0858
The salient features of modern gasoline direct injection include cavitation, flash boiling, and plume/plume interaction, depending on the operating conditions. These complex phenomena make the prediction of the spray behavior particularly difficult. The present investigation combines mass-based experimental diagnostics with an advanced, in-house modeling capability in order to provide a multi-faceted study of the Engine Combustion Network’s Spray G injector. First, x-ray tomography is used to distinguish the actual injector geometry from the nominal geometry used in past works. The actual geometry is used as the basis of multidimensional CFD simulations which are compared to x-ray radiography measurements for validation under cold conditions. The influence of nozzle diameter and corner radius are of particular interest. Next, the model is used to simulate flash-boiling conditions, in order to understand how the cold flow behavior corresponds to flashing performance.
Technical Paper

Virtual Traffic Simulator for Connected and Automated Vehicles

2019-04-02
2019-01-0676
Connected and automated vehicle (CAV) technologies promise a substantial decrease in traffic accidents and traffic jams, and bring new opportunities for improving vehicle’s fuel economy. However, testing autonomous vehicles in a real world traffic environment is costly, and covering all corner cases is nearly impossible. Furthermore, it is very challenging to create a controlled real traffic environment that vehicle tests can be conducted repeatedly and compared fairly. With the capability of allowing testing more scenarios than those that would be possible with real world testing, simulations are deemed safer, more efficient, and more cost-effective. In this work, a full-scale simulation platform was developed to simulate the infrastructure, traffic, vehicle, powertrain, and their interactions. It is used as an effective tool to facilitate control algorithm development for improving CAV’s fuel economy in real world driving scenarios.
Technical Paper

Virtual Testing of Front Camera Module

2023-04-11
2023-01-0823
The front camera module is a fundamental component of a modern vehicle’s active safety architecture. The module supports many active safety features. Perception of the road environment, requests for driver notification or alert, and requests for vehicle actuation are among the camera software’s key functions. This paper presents a novel method of testing these functions virtually. First, the front camera module software is compiled and packaged in a Docker container capable of running on a standard Linux computer as a software in the loop (SiL). This container is then integrated with the active safety simulation tool that represents the vehicle plant model and allows modeling of test scenarios. Then the following simulation components form a closed loop: First, the active safety simulation tool generates a video data stream (VDS). Using an internet protocol, the tool sends the VDS to the camera SiL and other vehicle channels.
Technical Paper

Virtual Development of Control Coordinator for Engine and Aftertreatment Architecture Equipped with Diesel Fuel Burner

2023-08-28
2023-24-0103
Heating devices are effective technologies to strengthen emission robustness of AfterTreatment Systems (ATS) and to guarantee emission compliance in the new boundaries given by upcoming legislations. Moreover, they allow to manage the ATS warm-up independently from engine operating conditions, thereby reducing the need for specific combustion strategies. Within heating devices, an attractive solution to provide the required thermal power without mandating a 48V platform is the fuel burner. In this work, a model-based control coordinator to manage the interaction between engine, ATS and fuel burner device has been developed, virtually validated, and optimized. The control function features a burner model and a control logic to deliver the needed amount of thermal energy, while ensuring ATS hardware protection.
Technical Paper

Vehicle-In-The-Loop Workflow for the Evaluation of Energy-Efficient Automated Driving Controls in Real Vehicles

2022-03-29
2022-01-0420
This paper introduces a new systematic workflow for the rapid evaluation of energy-efficient automated driving controls in real vehicles in controlled laboratory conditions. This vehicle-in-the-loop (VIL) workflow, largely standardized and automated, is reusable and customizable, saves time and minimizes costly dynamometer time. In the first case study run with the VIL workflow, an automated car driven by an energy-efficient driving control previously developed at Argonne used up to 22 % less energy than a conventional control. In a VIL experiment, the real vehicle, positioned on a chassis dynamometer, has a digital twin that drives in a virtual world that replicates real-life situations, such as approaching a traffic signal or following other vehicles.
Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Technical Paper

Validation of a Line-Haul Class 8 Combination Truck

2010-10-05
2010-01-1998
The U.S. Environmental Protection Agency instrumented and tested a line-haul Class 8 tractor trailer on a 4-wheel-drive heavy-duty chassis dynamometer. A vehicle model was then developed in the Powertrain Systems Analysis Toolkit (PSAT), Argonne National Laboratory's vehicle simulation tool, using the truck technical specifications and the recorded data, which included the Portable Emissions Measurement System (PEMS) and Controller Area Network (CAN) signals. In this paper, we describe the test scenarios and the analysis performed on the data. We then present the vehicle model and assumptions. Finally, we compare the test and simulation data, including fuel consumption and component signals, as well as the main challenges specific to heavy-duty vehicle testing and simulation.
Journal Article

Validation of a LES Spark-Ignition Model (GLIM) for Highly-Diluted Mixtures in a Closed Volume Combustion Vessel

2021-04-06
2021-01-0399
The establishment of highly-diluted combustion strategies is one of the major challenges that the next generation of sustainable internal combustion engines must face. The desirable use of high EGR rates and of lean mixtures clashes with the tolerable combustion stability. To this aim, the development of numerical models able to reproduce the degree of combustion variability is crucial to allow the virtual exploration and optimization of a wide number of innovative combustion strategies. In this study ignition experiments using a conventional coil system are carried out in a closed volume combustion vessel with side-oriented flow generated by a speed-controlled fan. Acquisitions for four combinations of premixed propane/air mixture quality (Φ=0.9,1.2), dilution rate (20%-30%) and lateral flow velocity (1-5 m/s) are used to assess the modelling capabilities of a newly developed spark-ignition model for large-eddy simulation (GLIM, GruMo-UniMORE LES Ignition Model).
Journal Article

Validating Volt PHEV Model with Dynamometer Test Data Using Autonomie

2013-04-08
2013-01-1458
The first commercially available Plug-In Hybrid Electric Vehicle (PHEV), the General Motors (GM) Volt, was introduced into the market in December 2010. The Volt's powertrain architecture provides four modes of operation, including two that are unique and maximize the Volt's efficiency and performance. The electric transaxle has been specially designed to enable patented operating modes both to improve the electric driving range when operating as a battery electric vehicle and to reduce fuel consumption when extending the range by operating with an internal combustion engine (ICE). However, details on the vehicle control strategy are not widely available because the supervisory control algorithm is proprietary. Since it is not possible to analyze the control without vehicle test data obtained from a well-designed Design-of-Experiment (DoE), a highly instrumented GM Volt, including thermal sensors, was tested at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF).
Technical Paper

Validating Heavy-Duty Vehicle Models Using a Platooning Scenario

2019-04-02
2019-01-1248
Connectivity and automation provide the potential to use information about the environment and future driving to minimize energy consumption. Aerodynamic drag can also be reduced by close-gap platooning using information from vehicle-to-vehicle communications. In order to achieve these goals, the designers of control strategies need to simulate a wide range of driving situations in which vehicles interact with other vehicles and the infrastructure in a closed-loop fashion. RoadRunner is a new model-based system engineering platform based on Autonomie software, which can collectively provide the necessary tools to predict energy consumption for various driving decisions and scenarios such as car-following, free-flow, or eco-approach driving, and thereby can help in developing control algorithms.
Technical Paper

Utilizing Finite Element Tools to Model Objective Seat Comfort Results

2012-04-16
2012-01-0074
The comfort assessment of seats in the automotive industry has historically been accomplished by subjective ratings. This approach is expensive and time consuming since it involves multiple prototype seats and numerous people in supporting processes. In order to create a more efficient and robust method, objective metrics must be developed and utilized to establish measurable boundaries for seat performance. Objective measurements already widely accepted, such as IFD (Indentation Force Deflection) or CFD (Compression Force Deflection) [1], have significant shortcomings in defining seat comfort. The most obvious deficiency of these component level tests is that they only deal with a seats' foam rather than the system response. Consequently, these tests fail to take into account significant factors that affect seat comfort such as trim, suspension, attachments and other components.
Technical Paper

Using a DNS Framework to Test a Splashed Mass Sub-Model for Lagrangian Spray Simulations

2018-04-03
2018-01-0297
Numerical modeling of fuel injection in internal combustion engines in a Lagrangian framework requires the use of a spray-wall interaction sub-model to correctly assess the effects associated with spray impingement. The spray impingement dynamics may influence the air-fuel mixing and result in increased hydrocarbon and particulate matter emissions. One component of a spray-wall interaction model is the splashed mass fraction, i.e. the amount of mass that is ejected upon impingement. Many existing models are based on relatively large droplets (mm size), while diesel and gasoline sprays are expected to be of micron size before splashing under high pressure conditions. It is challenging to experimentally distinguish pre- from post-impinged spray droplets, leading to difficulty in model validation.
Technical Paper

Using Modeling and Simulation to Support Future Medium and Heavy Duty Regulations

2011-01-19
2011-26-0048
Other than in Japan, medium and heavy duty vehicles (MHDVs) are not regulated despite accounting for a significant portion of the fuel consumed (about 26% in the US in 2008). Government agencies worldwide are currently evaluating options to address that issue. Due to the large number of vehicle applications, some of them being “one of a kind”, vehicle modelling and simulation offers an attractive solution to medium and heavy duty regulations. This paper discusses the advantages and challenges of vehicle simulation to support regulations.
Technical Paper

Use of Active Rear Steering to Achieve Desired Vehicle Transient Lateral Dynamics

2018-04-03
2018-01-0565
This paper studies the use of active rear steering (4-wheel steering) to change the transient lateral dynamics and body motion of passenger cars in the stable or linear region of the tires. Rear steering systems have been used for several decades to improve low speed turning maneuverability and high speed stability, and various control strategies have been previously published. With a model-based, feed-forward rear steer control strategy, the lateral transient can be influenced separately from the steady-state steering gain. This lateral transient is influenced by many vehicle parameters, but we will look at the influence of active rear steer and various tire types such as all-season, snow, and summer. This study will explore the ability for a rear steering system to change the lateral transient to a step steer input, compared to the effect of changing tire types.
Journal Article

Uncertainty Assessment in Restraint System Optimization for Occupants of Tactical Vehicles

2016-04-05
2016-01-0316
We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
Journal Article

Transmission Output Chain Spin Loss Study

2017-03-28
2017-01-1135
Transmission spin loss has significant influence on the vehicle fuel economy. Transmission output chain may contribute up to 10~15% of the total spin loss. However, the chain spin loss information is not well documented. An experimental study was carried out with several transmission output chains and simulated transmission environment in a testing box. The studies build the bases for the chain spin loss modeling and depicted the influences of the speed, the sprocket sizes, the oil levels, the viscosity, the temperatures and the baffle. The kriging method was employed for the parameter sensitivity study. A closed form of empirical model was developed. Good correlation was achieved.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Technical Paper

Transient Aerodynamics Simulations of a Passenger Vehicle during Deployment of Rear Spoiler

2024-04-09
2024-01-2536
In the context of vehicle electrification, improving vehicle aerodynamics is not only critical for efficiency and range, but also for driving experience. In order to balance the necessary trade-offs between drag and downforce without significant impact on the vehicle styling, we see an increasing amount of active aerodynamic solutions on high-end passenger vehicles. Active rear spoilers are one of the most common active aerodynamic features. They deploy at high vehicle speed when additional downforce is required [1, 2]. For a vehicle with an active rear spoiler, the aerodynamic performance is typically predicted through simulations or physical testing at different static spoiler positions. These positions range from fully stowed to fully deployed. However, this approach does not provide any information regarding the transient effects during the deployment of the rear spoiler, which can be critical to understanding key performance aspects of the system.
Technical Paper

Transfer Function Generation for Model Abstraction Using Static Analysis

2017-03-28
2017-01-0010
Currently, Model Based Development (MBD) is the de-facto methodology in automotive industry. This has led to conversions of legacy code to Simulink models. Our previous work was related to implementing the C2M tool to automatically convert legacy code to Simulink models. While the tool has been implemented and deployed on few OEM pilot code-sets there were several improvement areas identified w.r.t. the generated models. One of the improvement areas identified was that the generated model used atomic blocks instead of abstracted blocks available in Simulink. E.g. the generated model used an ADD block and feedback loop to represent an integration operation instead of using an integrator block directly. This reduced the readability of the model even though the functionality was correct. Thus, as a user of the model, an engineer would like to see abstract blocks rather than atomic blocks.
X