Refine Your Search

Search Results

Technical Paper

The Large Omnidirectional Child (LODC) ATD: Biofidelity Comparison with the Hybrid III 10 Year Old

2016-11-07
2016-22-0017
When the Hybrid III 10-year old (HIII-10C) anthropomorphic test device (ATD) was adopted into Code of Federal Regulations (CFR) 49 Part 572 as the best available tool for evaluating large belt-positioning booster seats in Federal Motor Vehicle Safety Standard (FMVSS) No. 213, NHTSA stated that research activities would continue to improve the performance of the HIII-10C to address biofidelity concerns. A significant part of this effort has been NHTSA’s in-house development of the Large Omnidirectional Child (LODC) ATD. This prototype ATD is comprised of (1) a head with pediatric mass properties, (2) a neck that produces head lag with Z-axis rotation at the atlanto-occipital joint, (3) a flexible thoracic spine, (4) multi-point thoracic deflection measurement capability, (5) skeletal anthropometry representative of a seated child, and (6) an abdomen that can directly measure belt loading.
Technical Paper

The First Standard Automotive Crash Dummy

1969-02-01
690218
The SAE Recommended Practice J963 “Anthropomorphic Test Device for Dynamic Testing” describes a standard 50th percentile adult male anthropomorphic test dummy. For nearly three years the Crash Test Dummy Task Force worked with the limited data available in selecting values for the body dimensions and ranges of motion. The data for specifying the values of mass distribution were developed experimentally as was a test procedure for determining the dynamic spring rate of the thorax.
Technical Paper

Size, Weight and Biomechanical Impact Response Requirements for Adult Size Small Female and Large Male Dummies

1989-02-01
890756
This paper summarizes the rationale used to specify the geometric, inertial and impact response requirements for a small adult female dummy and a large adult male dummy with impact biofidelity and measurement capacity comparable to the Hybrid III dummy, the most advanced midsize adult male dummy. Body segment lengths and weights for these two dummies were based on the latest anthropometry studies for the extremes of the U.S.A. adult population. Other characteristic body segment dimensions were calculated from geometric and mass scaling relationships that assured that each body segment had the same mass density as the corresponding body segment of the Hybrid III dummy. The biomechanical impact response requirements for the head, neck, chest and knee of the Hybrid III dummy were scaled to give corresponding biomechanical impact response requirements for each dummy.
Technical Paper

Safety Belt Buckle Environment in Vehicle Planar Crash Tests

2008-04-14
2008-01-1231
A study was conducted by General Motors at its crash test facility located at the Milford Proving Ground. The intent of this study was to expand upon the currently available research regarding the safety belt buckle environment during full scale planar crash tests. Buckle accelerations and webbing tensions were measured and recorded to characterize, in part, buckle responses in a crash environment. Previous studies have focused primarily on the component level testing of safety belt buckles. The crash tests included a variety of vehicles, impact types, seating positions, Anthropomorphic Test Devices (ATDs), impact speeds, and impact angles. Also included were various safety belt restraint systems and pretensioner designs. This study reports on data recorded from 100 full scale crash tests with 180 instrumented end release safety belt buckles. Acceleration measurements were obtained with tri-axial accelerometers mounted onto the buckles.
Technical Paper

Rollover and Drop Tests - The Influence of Roof Strength on Injury Mechanics Using Belted Dummies

1990-10-01
902314
This report presents the test methods and results of a study involving lap/shoulder belted dummies in dynamic dolly rollover tests and inverted vehicle drop tests. Data are presented showing dummy neck loadings resulting from head impacts to the vehicle interior as the vehicle contacts the ground. Comparison of the number and magnitude of axial neckloads are presented for rollcaged and production vehicles, as well as an analysis of the factors which influence neckloads under these conditions.
Technical Paper

Part Two - Dummies - Description and Basis of a Three-Year-Old Child Dummy Or Evaluating Passenger Inflatable Restraint Concepts

1982-01-01
826040
A primary concern in the development of a passenger inflatable restraint system is the possibility that a child could be in the path of the deploying cushion either due to initial position at the time of an accident or due to precrash braking accompanying an accident. Previous studies by General Motors and Volvo have indicated that serious injuries to children are possible if the cushion/child interaction forces are not controlled by system design. This paper describes an instrumented child dummy which was developed to provide measurements of the various cushion/child interaction forces. An analysis is given describing the types of injuries which could be associated with the various types of interaction forces. These results were used to develop appropriate dummy instrumentation for indicating the severity of the cushion/child interaction. A description of the modifications made to an existing three-year-old child dummy are described.
Technical Paper

Hybrid III Sternal Deflection Associated with Thoracic Injury Severities of Occupants Restrained with Force-Limiting Shoulder Belts

1991-02-01
910812
A relationship between the risk of significant thoracic injury (AIS ≥ 3) and Hybrid III dummy sternal deflection for shoulder belt loading is developed. This relationship is based on an analysis of the Association Peugeot-Renault accident data of 386 occupants who were restrained by three-point belt systems that used a shoulder belt with a force-limiting element. For 342 of these occupants, the magnitude of the shoulder belt force could be estimated with various degrees of certainty from the amount of force-limiting band ripping. Hyge sled tests were conducted with a Hybrid III dummy to reproduce the various degrees of band tearing. The resulting Hybrid III sternal deflections were correlated to the frequencies of AIS ≥ 3 thoracic injury observed for similar band tearing in the field accident data. This analysis indicates that for shoulder belt loading a Hybrid III sternal deflection of 50 mm corresponds to a 40 to 50% risk of an AIS ≥ 3 thoracic injury.
Technical Paper

Hybrid III 5th Female Neck Test Rotation Measurement

2005-04-11
2005-01-0303
Lab to lab differences in the testing of the Hybrid III 5th female dummy neck have led to the same neck passing in one lab and failing in another. Several indicators led to the hypothesis that the neck rotation measurement system is a critical factor in the differences observed. The Transportation Research Center Inc. and Denton ATD Inc. collaboratively conducted tests to understand the nature and importance of any differences obtained when different measurement devices are used. Dummy testing laboratories today use a neck rotation measurement system consisting of two rotary potentiometers, one attached to the neck/pendulum interface and one attached to the pivot pin which moves with the head of the dummy, plus a linkage between the two potentiometers (pots). The data from the two pots is summed for a total rotation. Neck testing was performed on two necks (of different manufacture) to investigate the effect of three rotation measurement assemblies' designs and masses.
Technical Paper

Evaluation of the Internal and External Biofidelity of Current Rear Impact ATDs to Response Targets Developed from Moderate-Speed Rear Impacts of PMHS

2012-10-29
2012-22-0005
The goal of this study is to evaluate both the internal and external biofidelity of existing rear impact anthropomorphic test devices (BioRID II, RID3D, Hybrid III 50th) in two moderate-speed rear impact sled test conditions (8.5g, 17 km/h; 10.5g, 24 km/h) by quantitatively comparing the ATD responses to biomechanical response targets developed from PMHS testing in a corresponding study. The ATDs and PMHS were tested in an experimental seat system that is capable of simulating the dynamic seat back rotation response of production seats. The experimental seat contains a total of fourteen load cells installed such that external loads from the ATDs and PMHS can be measured to evaluate external biofidelity. The PMHS were instrumented to correspond to the instrumentation contained in the ATDs so that direct comparison between ATDs and PMHS could be made to evaluate internal biofidelity.
Technical Paper

Evaluation of the Hybrid III Dummy Interactions with Air Bag in Frontal Crash by Finite Element Simulation

1995-11-01
952705
A deformable finite element dummy model was used to simulate air bag interaction with in-position passenger side occupants in frontal vehicle crash. This dummy model closely simulates the Hybrid III hardware with respect to geometry, mass, and material properties. Test data was used to evaluate the validity of the model. The calculated femur loads, chest acceleration and head acceleration were in good agreement with the test data. A semi-rigid dummy model (with rigid chest) was derived from the deformable dummy to improve turnaround time. Simulation results using the semi-rigid dummy model were also in reasonable agreement with the test data. For comparison purpose, simulations were also performed using PAMCVS, a hybrid code which couples the finite element code PAMCRASH with the rigid body occupant code. The deformable dummy model predicted better chest acceleration than the other two models.
Technical Paper

Evaluation of Neck Bracket Angles and Neck Torque Procedures in the Hybrid III Small Female Neck Flexion Test

2008-04-14
2008-01-0530
Lab-to-lab differences are an important consideration in the verification testing of Hybrid III dummy necks in user labs. The authors, the Anthropomorphic test device Certification Research group (ACR), conducted and presented two previous studies investigating lab to lab differences in Hybrid III 5th female dummy neck certification results [1, 2]. The results of both studies underscored the need to have better controls on the test procedure. The complex procedure for dummy neck certification has many setup factors that can contribute to test variation and unacceptable precision. Two steps within this protocol - two aspects of the neck's physical setup - were identified by the ACR group as potential sources for variation: 1) setting the pre-test D-plane angle by neck bracket adjustment, and 2) setting the torque on the neck cable. Fifth female neck flexion tests were conducted with variations in these factors to determine their effect on neck test results.
Technical Paper

Establishing Occupant Response Metrics on a Roll Simulator

2012-04-16
2012-01-0099
This paper presents the results of an in-depth study of the measurement of occupant kinematic response on the S-E-A Roll Simulator. This roll simulator was built to provide an accurate and repeatable test procedure for the evaluation of occupant protection and restraint systems during roll events within a variety of occupant compartments. In the present work this roll simulator was utilized for minimum-energy, or threshold type, rollover events of recreational off-highway vehicles (ROVs). Input profiles for these tests were obtained through a separate study involving autonomous full vehicle tests [1]. During simulated roll events anthropomorphic test device (ATD) responses were measured using on-board high speed video, an optical three-dimensional motion capture system (OCMS) and an array of string potentiometers.
Technical Paper

Development and Calibration of the Large Omnidirectional Child ATD Head Finite Element Model

2021-04-06
2021-01-0922
To improve the biofidelity of the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD), the National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) ATD. The LODC head is a redesigned HIII-10C head with mass properties and modified skin material required to match pediatric biomechanical impact response targets from the literature. A dynamic, nonlinear finite element (FE) model of the LODC head has been developed using the mesh generating tool Hypermesh based on the three-dimensional CAD model. The material data, contact definitions, and initial conditions are defined in LS-PrePost and converted to LS-Dyna solver input format. The aluminum head skull is stiff relative to head flesh material and was thus modeled as a rigid material. For the actual LODC, the head flesh is form fit onto the skull and held in place through contact friction.
Technical Paper

Determining the Precision of the Hybrid III Small Female Neck Calibration Laboratory Test Procedure Using ASTM E 691

2007-04-16
2007-01-1172
Lab-to-lab differences have become a very important consideration in the verification testing of Hybrid III 5th Female necks in user labs. It has been observed that a neck certified by one laboratory does not always pass the same certification test in a different lab. This has led the Anthropomorphic test device Certification Research group (ACR) to investigate the precision of the test procedure in relation to the test specification corridors. This study adapts an industry recognized ASTM procedure to measure the precision of the SAE neck calibration laboratory test procedure in Engineering Aid 25 [1]. The ASTM procedure is ASTM E 691-99 “Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method” [2]. This paper details how the ASTM procedure was adapted and presents the results of the ASTM E 691 statistical analysis procedures.
Technical Paper

Comparison of D-Plane Measurement Methods for the Hybrid III Small Female Neck Flexion Test

2008-04-14
2008-01-0531
This study by the Anthropomorphic test device Certification Research group (ACR) takes a new look at dummy neck rotation measurement methods. The authors' previous SAE Congress paper, Watters et al., 2005, focused on comparing three different rotary pot measurement systems in the same Hybrid III 5th Female neck flexion test at a single laboratory [1]. Differences between the pot systems, and between the pot systems and video analysis of the head rotation, were found to be a significant component of the observed test variation. The 2005 rotary potentiometer study used a modified head known as the Nine Accelerometer Array Head (NAAH). The NAAH data for rotation about the Y-axis, only recently analyzed, showed exceptional agreement with the video analysis as compared to the rotary potentiometer data.
Technical Paper

Child Restraint Systems (CRS) with Minor Installation Incompatibilities in Far Side Impacts

2021-04-06
2021-01-0915
Side impacts are disproportionately injurious for children compared to other crash directions. Far side impacts allow for substantial translation and rotation of child restraint systems (CRS) because the CRS does not typically interact with any adjacent structures. The goal of this study is to determine whether minor installation incompatibilities between CRS and vehicle seats cause safety issues in far side crashes. Four non-ideal CRS installation conditions were compared against control conditions having good fit. Two repetitions of each condition were run. The conditions tested were: 1) rear-facing (RF) CRS installed with a pool noodle to create proper recline angle, 2) RF CRS with narrow base, 3) forward-facing (FF) CRS with gap behind back near seat bight (i.e., vehicle seat angle too acute for CRS), 4) FF CRS with gap behind back near top of CRS (i.e., vehicle seat angle too obtuse for CRS). Second row captain’s chairs were set up at 10° anterior of lateral.
Technical Paper

Brain Injury Risk Assessment of Frontal Crash Test Results

1994-03-01
941056
An objective, biomechanically based assessment is made of the risks of life-threatening brain injury of frontal crash test results. Published 15 ms HIC values for driver and right front passenger dummies of frontal barrier crash tests conducted by Transport Canada and NHTSA are analyzed using the brain injury risk curve of Prasad and Mertz. Ninety-four percent of the occupants involved in the 30 mph, frontal barrier compliance tests had risks of life-threatening brain injury less than 5 percent. Only 3 percent had risks greater than 16 percent which corresponds to 15 ms HIC > 1000. For belt restrained occupants without head contact with the interior, the risks of life-threatening brain injury were less than 2 percent. In contrast, for the more severe NCAP test condition, 27 percent of the drivers and 21 percent of the passengers had life-threatening brain injury risks greater than 16 percent.
Technical Paper

Biomechanical Responses of PMHS in Moderate-Speed Rear Impacts and Development of Response Targets for Evaluating the Internal and External Biofidelity of ATDs

2012-10-29
2012-22-0004
The objectives of this study were to obtain biomechanical responses of post mortem human subjects (PMHS) by subjecting them to two moderate-speed rear impact sled test conditions (8.5g, 17 km/h; 10.5g, 24 km/h) while positioned in an experimental seat system, and to create biomechanical targets for internal and external biofidelity evaluation of rear impact ATDs. The experimental seat was designed to measure external loads on the head restraint (4 load cells), seat back (6 load cells), and seat pan (4 load cells) such that subject dynamic interaction with the seat could be evaluated. This seat system was capable of simulating the dynamic characteristics of modern vehicle seat backs by considering the moment-rotation properties of a typical passenger vehicle, thus providing a more realistic test environment than using a rigid seat with a non-rotating seat back as done in previous studies.
Technical Paper

Biomechanical Basis for the CRABI and Hybrid III Child Dummies

1997-11-12
973317
A family of adult and child size dummies was developed under the direction of two task groups of the SAE Mechanical Human Simulation Subcommittee of the Human Biomechanics and Simulation Standards Committee. These new child size dummies represent fiftieth percentile children who are 6 months, 12 months, 18 months, 3 years, and 6 years old. The sizes and total body weights of the dummies were based on detailed anthropometry studies of children of these ages. The techniques used to establish the segment masses and the resulting design goals are detailed. Appropriate impact response requirements were scaled from the biofidelity response requirements of the Hybrid III, taking into account the differences in size, mass and elastic modulus of bone between adults and children. The techniques used to establish the biomechanical impact response requirements for the child dummies are discussed and the resulting biomechanical impact response requirements are given.
Technical Paper

Biofidelity and Injury Assessment in Eurosid I and Biosid

1995-11-01
952731
Side impact pendulum tests were conducted on Eurosid I and Biosid to assess the biofidelity of the thorax, abdomen and pelvis, and determine injury tolerance levels. Each body region was impacted at 4.5, 6.7, and 9.4 m/s using test conditions which duplicate cadaver impacts with a 15 cm flat-circular 23.4 kg rigid mass. The cadaver database establishes human response and injury risk assessment in side impact. Both dummies showed better biofidelity when compared to the lowest-speed cadaver response corridor. At higher speeds, peak force was substantially higher. The average peak contact force was 1.56 times greater in Biosid and 2.19 times greater in Eurosid 1 than the average cadaver response. The Eurosid I abdomen had the most dissimilar response and lacks biofidelity. Overall, Biosid has better biofidelity than Eurosid I with an average 21% lower peak load and a closer match to the duration of cadaver impact responses for the three body regions.
X