Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Performance Optimization for the XAM Hybrid Electric Vehicle Prototype

2012-04-16
2012-01-0773
Given the ever-increasing concern about environmental issues, the automotive industry is focusing on the development of innovative technologies that allow reduction of gas emissions and fuel consumption. Over the last few years, Hybrid Electric Vehicles (HEV) and Fuel Cell Vehicles have been developed as the most promising alternative solutions for many car manufacturers. Although fuel cells are considered as the best technology to have zero emission, the impact on infrastructure for a large-scale deployment is not yet solved. For this reason, HEV represent a valid shorter-term alternative that guarantees drastic emissions reduction and reduced fuel consumption with a much lower infrastructural impact. This paper reports the results obtained by the optimization of the emissions and fuel performances of a hybrid electric city vehicle for urban transportation named XAM (eXtreme Automotive Mobility). In order to optimize these performances, a 1D model of the vehicle has been created.
Technical Paper

Optimization of IDRApegasus: Fuel Cell Hydrogen Vehicle

2013-04-08
2013-01-0964
Given the growing concern for environmental issues, the automotive industry is working more deeply on the development of innovative technologies that reduce gas emissions and fuel consumption. Many car manufacturers have identified hybrid electric vehicles (HEV) and fuel cell vehicles as the most promising solutions alternatives. IDRApegasus is a fuel cell hydrogen vehicle developed at the Politecnico of Turin. It participated at the Shell Eco-marathon Europe in Rotterdam (Netherlands) from 17-19 May 2012, a competition for low energy consumption vehicles and also an educational project that joins the value of sustainable development with a vehicle that will use the smallest amount of fuel and produce the lowest emissions possible.
Technical Paper

Modeling and Optimization of the Consumption of a Three-Wheeled Vehicle

2019-04-02
2019-01-0164
In recent years, there is an increasing global interesting in alternative sources of energy. For this reason, Shell Company creates Shell Eco Marathon, a competition for fuel-efficient vehicles designed by student around the world. IDRAkronos is a fuel cell hydrogen prototype developed at the Politecnico of Turin. The vehicle races in prototype category with the task to complete ten laps of an urban circuit driving a total distance of 15 km in a maximum time of 39 min, then with an average speed of approximately 25 km/h, obtaining the less consumption. The vehicle is a three wheels vehicle based on a carbon fibre monocoque pushed by a hydrogen fuel cell with a high efficiency DC electric motor. The paper describes modelling and optimization of the powertrain design applicable to the development of fuel cell electric vehicles.
Technical Paper

Innovative Zero-Emissions Braking System: Performance Analysis Through a Transient Braking Model

2024-04-09
2024-01-2553
This paper presents the analysis of an innovative braking system as an alternative and environmentally friendly solution to traditional automotive friction brakes. The idea arose from the need to eliminate emissions from the braking system of an electric vehicle: traditional brakes, in fact, produce dust emissions due to the wear of the pads. The innovative solution, called Zero-Emissions Driving System (ZEDS), is a system composed of an electric motor (in-wheel motor) and an innovative brake. The latter has a geometry such that it houses MagnetoRheological Fluid (MRF) inside it, which can change its viscous properties according to the magnetic field passing through it. It is thus an electro-actuated brake, capable of generating a magnetic field passing through the fluid and developing braking torque. A performance analysis obtained by a simulation model built on Matlab Simulink is proposed.
Technical Paper

Human-Driving Highway Overtake and Its Perceived Comfort: Correlational Study Using Data Fusion

2020-04-14
2020-01-1036
As an era of autonomous driving approaches, it is necessary to translate handling comfort - currently a responsibility of human drivers - to a vehicle imbedded algorithm. Therefore, it is imperative to understand the relationship between perceived driving comfort and human driving behaviour. This paper develops a methodology able to generate the information necessary to study how this relationship is expressed in highway overtakes. To achieve this goal, the approach revolved around the implementation of sensor Data Fusion, by processing data from CAN, camera and LIDAR from experimental tests. A myriad of variables was available, requiring individuating the key-information and parameters for recognition, classification and understanding of the manoeuvres. The paper presents the methodology and the role each sensor plays, by expanding on three main steps: Data segregation and parameter selection; Manoeuvre detection and processing; Manoeuvre classification and database generation.
Journal Article

Design and Modelling of the Powertrain of a Hybrid Fuel Cell Electric Vehicle

2021-04-06
2021-01-0734
This paper presents a Fuel Cell Electric Vehicle (FCEV) powertrain development and optimization, aiming to minimize hydrogen consumption. The vehicle is a prototype that run at the Shell Eco-marathon race and its powertrain is composed by a PEM fuel cell, supercapacitors and a DC electric motor. The supercapacitors serve as an energy buffer to satisfy the load peaks requested by the electric motor, allowing a smoother (and closer to a stationary application) working condition for the fuel cell. Thus, the fuel cell can achieve higher efficiency rates and the fuel consumption is minimized. Several models of the powertrain were developed using MATLAB-Simulink and then experimentally validated in laboratory and on the track. The proposed models allow to evaluate two main arrangements between fuel cell and supercapacitors: 1) through a DC/DC converter that sets the FC current to a desired value; 2) using a direct parallel connection between fuel cell and supercapacitors.
Technical Paper

Comprehensive Design Methodology of a Vehicle Monocoque: From Vehicle Dynamics to Manufacturing

2023-04-11
2023-01-0600
Climate change has become a real problem in our world. Society is trying to contain it as much as possible, promoting more sustainable behaviors and limiting pollution. For the automotive industry, this leads to progressive electrification and reduction of tailpipe emissions and fuel consumption for conventional vehicles. In this framework, this paper presents the design of a vehicle to compete in the Urban Concept category of Shell Eco Marathon, a competition among universities that has the goal to release a vehicle with the lowest possible fuel consumption. This work describes the monocoque design phases of the vehicle JUNO. The complete design approach is described, through the analysis of the decisional workflow adopted to integrate every technical solution from the aerodynamic constraints to the structural ones passing from the vehicle dynamic requirements.
Journal Article

Composite Control Arm Design: A Comprehensive Workflow

2021-04-06
2021-01-0364
This paper presents a complete overview of the computational design of an advanced suspension control arm constructed of composite material for light weighting purposes. The proposed methodology presented in detail is split into 3 phases. Phase 1 or Vehicle Performance Simulation, in which basic modelling and a sensibility study is performed to better understand the advantages of unsprung mass reduction (compared to sprung mass reduction) with respect to the vehicle’s vertical dynamics. It followed by the development and utilization of a multibody approach to evaluate the full-vehicle response to different dynamic maneuvers, such as harsh road imperfections, sine sweep steering, and double lane change tests. The impact of the improved suspension control arm is highlighted in detail, and the loads to which it is subjected are computed to serve as inputs for the successive phases.
Technical Paper

A numerical Methodology for Induction Motor Control: Lookup Tables Generation and Steady-State Performance Analysis

2024-04-09
2024-01-2152
This paper presents a numerical methodology to generate lookup tables that provide d- and q-axis stator current references for the control of electric motors. The main novelty with respect to other literature references is the introduction of the iron power losses in the equivalent-circuit electric motor model implemented in the optimization routine. The lookup tables generation algorithm discretizes the motor operating domain and, given proper constraints on maximum stator current and magnetic flux, solves a numerical optimization problem for each possible operating point to determine the combination of d- and q- axis stator currents that minimizes the imposed objective function while generating the desired torque. To demonstrate the versatility of the proposed approach, two different variants of this numerical interpretation of the motor control problem are proposed: Maximum Torque Per Ampere and Minimum Electromagnetic Power Loss.
X