Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Dynamics Simulation to Develop an Active Roll Control System

2007-04-16
2007-01-0828
Active Roll Control (ARC) is one of the most promising active systems to improve vehicle comfort and handling. This paper describes the simulation based procedure adopted to conceive a double-channel Active Roll Control system, characterized by the hydraulic actuation of the stabilizer bars of a sedan. The first part of the paper presents the vehicle model adopted for this activity. It is Base Model Simulator (BMS), the 14 Degrees-of-Freedom vehicle model by Politecnico di Torino. It was validated through road tests. Then the paper describes the development of the control algorithm adopted to improve the roll dynamics of the vehicle. The implemented control algorithm is characterized by a first subsystem, capable of obtaining the desired values of body roll angle as a function of lateral acceleration during semi-stationary maneuvers.
Technical Paper

Road to Virtual Tuning: New Physical Lump Model and Test Protocol to Support Damper Tuning in Hyundai Motor Europe Technical Center

2019-04-02
2019-01-0855
Vehicle dynamics is a fundamental part of vehicle performance. It combines functional requirements (i.e. road safety) with emotional content (“fun to drive”, “comfort”): this balance is what characterizes the car manufacturer (OEM) driving DNA. To reach the customer requirements on Ride & Handling, integration of CAE and testing is mandatory. Beside of cutting costs and time, simulation helps to break down vehicle requirements to component level. On chassis, the damper is the most important component, contributing to define the character of the vehicle, and it is defined late, during tuning, mainly by experienced drivers. Usually 1D lookup tables Force vs. Velocity, generated from tests like the standard VDA, are not able to describe the full behavior of the damper: different dampers display the same Force vs. Velocity curve but they can give different feeling to the driver.
Technical Paper

Racing Simulation of a Formula 1 Vehicle with Kinetic Energy Recovery System

2008-12-02
2008-01-2964
This paper deals with the development of a Lap Time Simulator in order to carry out a first approximate evaluation of the potential benefits related to the adoption of the Kinetic Energy Recovery System (KERS). KERS will be introduced in the 2009 Formula 1 Season. This system will be able to store energy during braking and then use it in order to supply an extra acceleration during traction. Different technologies (e.g. electrical, hydraulic and mechanical) could be applied in order to achieve this target. The lap time simulator developed by the authors permits to investigate the advantages both in terms of fuel consumption reduction and the improvement of the lap time.
Technical Paper

Pre-Design and Feasibility Analysis of a Magneto-Rheological Braking System for Electric Vehicles

2023-04-11
2023-01-0888
Magneto-Rheological (MR) Fluid started to be used for industrial applications in the last 20 years, and, from that moment on, innovative uses have been evaluated for different applications to exploit its characteristic of changing yield stress as a function of the magnetic field applied. Because of the complexity of the behavior of the MR fluid, it is necessary to perform lots of simulations, combining multi-physical software capable of evaluating all the material’s characteristics. The paper proposes a strategy capable of quickly verifying the feasibility of an innovative MR system, considering a sufficient accuracy of the approximation, able to easily verify the principal criticalities of the innovative applications concerning the MR fluid main electromagnetic and fluid-dynamic capabilities.
Technical Paper

Optimizing Urban Traffic Efficiency via Virtual Eco-Driving Featured by a Single Automated Vehicle

2024-04-09
2024-01-2082
In the face of growing concerns about environmental sustainability and urban congestion, the integration of eco-driving strategies has emerged as a pivotal solution in the field of the urban transportation sector. This study explores the potential benefits of a CAV functioning as a virtual eco-driving controller in an urban traffic scenario with a group of following human-driven vehicles. A computationally inexpensive and realistic powertrain model and energy management system of the Chrysler Pacifica PHEV are developed with the field experiment data and integrated into a forward-looking vehicle simulator to implement and validate an eco-driving speed planning and energy management strategy assuming longitudinal automation. The eco-driving algorithm determines the optimal vehicle speed profile and energy management strategy.
Technical Paper

Optimization of a Variable Geometry Exhaust System Through Design of Experiment

2008-04-14
2008-01-0675
Experimental Design methodologies have been applied in conjunction with objective functions for the optimization of the internal geometry of a rear muffler of a subcompact car equipped with a 1.4 liters displacement s.i. turbocharged engine. The muffler also features an innovative variable geometry design. The definition of an objective function summarising the silencing capability of the muffler has been driving the optimization process with the aim to reduce the tailpipe noise while maintaining acceptable pressure losses and complying with severe space constraints. Design of Experiments techniques for the reduction of experimental plans have been shown to be extremely effective to find out the optimum values of the design parameters, allowing a remarkable reduction of the time required by the design process in comparison with full factorial designs.
Journal Article

Optimization of Electrified Powertrains for City Cars

2012-06-01
2011-01-2451
Sustainable and energy-efficient consumption is a main concern in contemporary society. Driven by more stringent international requirements, automobile manufacturers have shifted the focus of development into new technologies such as Hybrid Electric Vehicles (HEVs). These powertrains offer significant improvements in the efficiency of the propulsion system compared to conventional vehicles, but they also lead to higher complexities in the design process and in the control strategy. In order to obtain an optimum powertrain configuration, each component has to be laid out considering the best powertrain efficiency. With such a perspective, a simulation study was performed for the purpose of minimizing well-to-wheel CO2 emissions of a city car through electrification. Three different innovative systems, a Series Hybrid Electric Vehicle (SHEV), a Mixed Hybrid Electric Vehicle (MHEV) and a Battery Electric Vehicle (BEV) were compared to a conventional one.
Technical Paper

OPTIBODY: A New Structural Design Focused in Safety

2013-11-27
2013-01-2760
With electric vehicles becoming more and more popular, the classic “general purpose” vehicle concept is changing to a “dedicated vehicle” concept. Light trucks for goods delivery in cities are one of the examples. The European vehicle category L7e fits perfectly in the low power, low weight vehicle requirements for an electric light truck for goods delivery. However, the safety requirements of this vehicle category are very low and their occupants are highly exposed to injuries in the event of a collision. The European Commission co-funded project OPTIBODY (Optimized Structural components and add-ons to improve passive safety in new Electric Light Trucks and Vans) is developing a new structural concept based on a chassis, a cabin a several add-ons. The add-ons will provide improved protection in case of frontal, side and rear impact.
Technical Paper

Numerical Simulation to Improve Engine Control During Tip-In Manoeuvres

2003-03-03
2003-01-0374
The potential of numerical simulation in the analysis of the dynamic transient response of a vehicle during tip-in manoeuvres has been evaluated. The dynamic behavior of the driveline of a typical European gasoline car was analyzed under a sharp throttle input. A one-dimensional fluid dynamic model of the engine was realized for the simulation of the input torque; afterwards, it was coupled with a driveline and vehicle model implemented in Matlab-Simulink environment. After a detailed validation process based on several sets of experimental data, the engine and vehicle coupled simulation was used to evaluate different control strategies during tip-in manoeuvres aiming to enhance the vehicle driveability.
Technical Paper

Multifunctional System for Trace Gas Contaminants Removal

2009-07-12
2009-01-2525
The Atmospheric Revitalization System (ARS) provides carbon dioxide removal, trace contaminant control, and gas constituent analysis. In this field, the interest of RecycLAB [5], the TAS-I Advanced Live Support Research & Development laboratory is directed to trace gas contaminants removal and monitoring. During manned space mission, the decontamination of cabin or rack air after contingency events such as fire or pyrolysis is a priority for the crew safety. In this paper, basic zeolites, obtained by impregnation of common zeolites with a basic oxide, are used to remove acid gas contaminants from air stream. A multi-functional system, able to accommodate reactors of different shape, characteristics and set-up, is used at this purpose. This breadboard, called ZEUS (Zeolites for an Environmental-control Unit in Space), is made of AISI 316L stainless steel and consists of a closed loop, in which the inner volume is completely isolated from the external environment.
Technical Paper

Multi-body Versus Block-Oriented Approach in Suspension Dynamics of a Military Tracked Tank

2009-04-20
2009-01-0443
The superior mobility of a military vehicle provides the combat crew with a tactical advantage through increased cross country speed. The suspension system plays a fundamental role in evaluating a vehicle mobility. A mathematical model that allows realistic simulations of vehicles operating in a wide spectrum of environmental conditions may help to lower costs and time required during their development. The paper concerns with vehicle-terrain interaction modeling, for a military tracked tank, through multi-body and block-oriented approaches. It is focused on the consequences that the suspension system has got on the comfort and on the performance. Thus through a multi-body software a realistic three dimensional model of a tracked fighting vehicle is developed. This virtual model confirms some experimental data available on its longitudinal dynamics. In order to simplify the multi-body simulations, a block-oriented approach is adopted to develop a model of the same vehicle.
Technical Paper

Modal Analysis as a Design Tool for Dynamical Optimization of Common Rail Fuel Injection Systems

2015-09-06
2015-24-2467
A challenging task that is required to modern injection systems is represented by the enhanced control of the injected quantities, especially when small injections are considered, such as, pilot and main shots in the context of multiple injections. The propagation of the pressure waves triggered by the nozzle opening and closure events through the high-pressure hydraulic circuit can influence and alter the performance of the injection apparatus. For this reason, an investigation of the injection system fluid dynamics in the frequency domain has been proposed. A complete lumped parameter model of the high-pressure hydraulic circuit has been applied to perform a modal analysis. The visualization of the main vibration modes of the apparatus allows a detailed and deep comprehension of the system dynamics. Furthermore, the possible resonances, which are induced by the action of the external forcing terms, have been identified.
Technical Paper

Light Commercial Vehicle ADAS-Oriented Modelling: An Optimization-Based Conversion Tool from Multibody to Real-Time Vehicle Dynamics Model

2023-04-11
2023-01-0908
In the last few years, the number of Advanced Driver Assistance Systems (ADAS) on road vehicles has been increased with the aim of dramatically reducing road accidents. Therefore, the OEMs need to integrate and test these systems, to comply with the safety regulations. To lower the development cost, instead of experimental testing, many virtual simulation scenarios need to be tested for ADAS validation. The classic multibody vehicle approach, normally used to design and optimize vehicle dynamics performance, is not always suitable to cope with these new tasks; therefore, real-time lumped-parameter vehicle models implementation becomes more and more necessary. This paper aims at providing a methodology to convert experimentally validated light commercial vehicles (LCV) multibody models (MBM) into real-time lumped-parameter models (RTM).
Technical Paper

Integrated Active and Passive Systems for a Side Impact Scenario

2013-04-08
2013-01-1162
The paper presents a simulation methodology created to support an integrated safety system development process which was tested for the side impact collision load case. The methodology is based on the coupled and complementary use of two software packages: PreScan and Madymo. PreScan was utilized for designing two traffic scenarios and the sensing and control systems for the side collision recognition, while Madymo was utilized for assessing the effects of pre-crash deployment of thorax airbag. The collision conditions from the scenarios were used as input to define a Madymo side collision model of the host vehicle and to investigate and optimize several airbag deployment parameters: pre-crash deployment time, airbag permeability, vent hole size and vent hole opening time.
Technical Paper

Human-Driving Highway Overtake and Its Perceived Comfort: Correlational Study Using Data Fusion

2020-04-14
2020-01-1036
As an era of autonomous driving approaches, it is necessary to translate handling comfort - currently a responsibility of human drivers - to a vehicle imbedded algorithm. Therefore, it is imperative to understand the relationship between perceived driving comfort and human driving behaviour. This paper develops a methodology able to generate the information necessary to study how this relationship is expressed in highway overtakes. To achieve this goal, the approach revolved around the implementation of sensor Data Fusion, by processing data from CAN, camera and LIDAR from experimental tests. A myriad of variables was available, requiring individuating the key-information and parameters for recognition, classification and understanding of the manoeuvres. The paper presents the methodology and the role each sensor plays, by expanding on three main steps: Data segregation and parameter selection; Manoeuvre detection and processing; Manoeuvre classification and database generation.
Technical Paper

Gearbox Paradigm: A Support for Quick and Effective Gearbox Design

2019-04-02
2019-01-0806
The complexity of automotive market, the request of new gearbox layout able to improve the efficiency of a vehicle and the requirement of quick and effective design of gearboxes push the designers to seek new technologies, new layouts, new solutions. The typical development of a gearbox requires a lot of time and engineers' effort and it often implies a lot of time to define the right layout. The idea of developing a "paradigm" able to guide the designer through the design process seems to be effective. Starting from the experience of a code called "Engine Paradigm" where such idea was firstly implemented, the authors propose in the present paper the development of a code able to suggest a first attempt design of a gearbox. The "Gearbox Paradigm" code requires few data introduction, as torque, power, number of gears, some geometrical constraints such as the axes gap the gearbox layout, and the code elaborates a proposal of CAD design of a gearbox.
Technical Paper

Experimental Investigation on a 3D Wing Section Hosting Multiple SJAs for Stall Control Purpose

2015-09-15
2015-01-2453
Flow control over aerodynamic shapes in order to achieve performance enhancements has been a lively research area for last two decades. Synthetic Jet Actuators (SJAs) are devices able to interact actively with the flow around their hosting structure by providing ejection and suction of fluid from the enclosed cavity containing a piezo-electric oscillating membrane through dedicated orifices. The research presented in this paper concerns the implementation of zero-net-mass-flux SJAs airflow control system on a NACA0015, low aspect ratio wing section prototype. Two arrays with each 10 custom-made SJAs, installed at 10% and 65% of the chord length, make up the actuation system. The sensing system consists of eleven acoustic pressure transducers distributed in the wing upper surface and on the flap, an accelerometer placed in proximity of the wing c.g. and a six-axis force balance for integral load measurement.
Technical Paper

Enhanced Tire Brush Model for Vehicle Dynamics Simulation

2008-04-14
2008-01-0595
The aim of this paper is the conception of a tire model which allows a good fit with the physical experimental behavior of the component. In the meanwhile, the model should be simple enough to permit real time vehicle dynamics simulation, in the same way as the diffused Pacejka's model. The paper discusses the influence of the model for the estimation of contact patch properties on the overall tire forces and moments. It demonstrates that unrealistic models of the contact patch can lead to a good fit with the experimental data (in terms of forces and self-aligning moment), even if the real physics of the tire is not reproduced. A realistic model implies a significant reduction of the stiffness of the brushes as a function of the vertical load between the tire and the road surface.
Technical Paper

Development of an Improved Fractal Model for the Simulation of Turbulent Flame Propagation in SI Engines

2005-09-11
2005-24-082
The necessity for further reductions of in-cylinder pollutant formation and the opportunity to minimize engine development and testing times highlight the need of engine thermodynamic cycle simulation tools that are able to accurately predict the effects of fuel, design and operating variables on engine performance. In order to set up reliable codes for indicated cycle simulation in SI engines, an accurate prediction of heat release is required, which, in turn, involves the evaluation of in-cylinder turbulence generation and flame-turbulence interaction. This is generally pursued by the application of a combustion fractal model coupled with semi-empirical correlations of available geometrical and thermodynamical mass-averaged quantities. However, the currently available correlations generally show an unsatisfactory capability to predict the effects of flame-turbulence interaction on burning speed under the overall flame propagation interval.
Technical Paper

Development and Application of an Advanced Numerical Model for CR Piezo Indirect Acting Injection Systems

2010-05-05
2010-01-1503
A numerical model for simulating a Common Rail Piezo Indirect Acting fuel injection-system under steady state as well as transient operating conditions was developed using a commercial code. A 1D flow model of the main hydraulic system components, including the rail, the rail to injector connecting pipe and the injector, was applied in order to predict the influence of the injector layout and of each part of the hydraulic circuit on the injection system performance. The numerical code was validated through the comparison of the numerical results with experimental data obtained on a high performance test bench of the Moehwald-Bosch MEP2000/ CA4000 type. The developed injection-system mathematical model was applied to the analysis of transient flows in the hydraulic circuit paying specific attention to the fluid dynamics internal to the injector.
X