Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Water and Energy Transport for Crops under Different Lighting Conditions

2006-07-17
2006-01-2028
When high-intensity discharge (HID) electric lamps are used for plant growth, system inefficiencies occur due to an inability to effectively target light to all photosynthetic tissues of a growing crop stand, especially when it is closed with respect to light penetration. To maintain acceptable crop productivity, light levels typically are increased thus increasing heat loads on the plants. Evapotranspiration (ET) or transparent thermal barrier systems are subsequently required to maintain thermal balance, and power-intensive condensers are used to recover the evaporated water for reuse in closed systems. By accurately targeting light to plant tissues, electric lamps can be operated at lower power settings and produce less heat. With lower power and heat loads, less energy is used for plant growth, and possibly less water is evapotranspired. By combining these effects, a considerable energy savings is possible.
Technical Paper

Wall Interactions of Hydrogen Flames Compared with Hydrocarbon Flames

2007-04-16
2007-01-1466
This paper provides a comparison of wall heat fluxes and quenching distances as one-dimensional hydrogen and heptane flames impinge head-on onto a wall. It is shown that the quenching distances for stoichiometric H2/air and C7H16/air flames under the specified conditions of this study are about the same, but the wall heat flux for the H2/air flames is approximately a factor of two greater. For lean H2/air mixtures, the quenching distance increases substantially and the wall heat flux decreases. To understand more clearly the interplay of flame speed, temperature, thermal diffusivity, and surface kinetics on the results, studies of H2/O2 flames are also carried out.
Technical Paper

Urine Processing for Water Recovery via Freeze Concentration

2005-07-11
2005-01-3032
Resource recovery, including that of urine water extraction, is one of the most crucial aspects of long-term life support in interplanetary space travel. This paper will consequently examine an innovative approach to processing raw, undiluted urine based on low-temperature freezing. This strategy is uniquely different from NASA's current emphasis on either ‘integrated’ (co-treatment of mixed urine, grey, and condensate waters) or ‘high-temperature’ (i.e., VCD [vapor compression distillation] or VPCAR [vapor phase catalytic ammonia removal]) processing strategies, whereby this liquid freeze-thaw (LiFT) procedure would avoid both chemical and microbial cross-contamination concerns while at the same time securing highly desirable reductions in likely ESM levels.
Technical Paper

Truck Ride — A Mathematical and Empirical Study

1969-02-01
690099
“Truck Ride” in this study refers to some vehicle ride parameters involved in tractor-trailer combinations. For the study, a mathematical model of a tractor-trailer vehicle as a vibrating system was developed. Principles of vibration theory were applied to the model while a digital computer was employed to investigate the complex system. To parallel the analytical investigation of the tractor-trailer vehicle, vehicle studies were conducted using a magnetic tape recorder and associated instrumentation installed in the tractor. Parameters studied included coupler position on the tractor, laden weight of trailer, spring rates of the different axles of the combination, damping capacity associated with each spring rate, vehicle speed, and “tar strip” spacing of the highway and cab mountings. The mathematical results were used as a basis for empirical study. A comparison of calculated and empirical data are reported.
Technical Paper

Thin-Walled Compliant Mechanism Component Design Assisted by Machine Learning and Multiple Surrogates

2015-04-14
2015-01-1369
This work introduces a new design algorithm to optimize progressively folding thin-walled structures and in order to improve automotive crashworthiness. The proposed design algorithm is composed of three stages: conceptual thickness distribution, design parameterization, and multi-objective design optimization. The conceptual thickness distribution stage generates an innovative design using a novel one-iteration compliant mechanism approach that triggers progressive folding even on irregular structures under oblique impact. The design parameterization stage optimally segments the conceptual design into a reduced number of clusters using a machine learning K-means algorithm. Finally, the multi-objective design optimization stage finds non-dominated designs of maximum specific energy absorption and minimum peak crushing force.
Technical Paper

Thermal Interface Materials Based on Anchored Carbon Nanotubes

2007-07-09
2007-01-3127
The new devices and missions to achieve the aims of NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and applications. In particular, the low conductance of metal-to-metal interfaces used in the thermal switches lengthen the cool-down phase and resource usage for spacecraft instruments. During this work, we developed and tested a vacuum-compatible, durable, heat-conduction interface that employs carbon nanotube (CNT) arrays directly anchored on the mating metal surfaces via microwave plasma-enhanced, chemical vapor deposition (PECVD). We demonstrated that CNT-based thermal interface materials have the potential to exceed the performance of currently available options for thermal switches and other applications.
Technical Paper

The Effects of Cage Flexibility on Ball-to-Cage Pocket Contact Forces and Cage Instability in Deep Groove Ball Bearings

2006-04-03
2006-01-0358
Rolling element bearings provide near frictionless relative motion between two rotating parts. Automotive transmissions use various ball and rolling element bearings to accommodate the relative motion between rotating elements. In order to understand changes in bearing performance due to the loads imposed through the transmission, advanced modeling of the bearing is required. This paper focuses on the effects of cage flexibility on bearing performance. A flexible cage model was developed and incorporated into a six degree-of-freedom dynamic, deep groove ball bearing model. A lumped mass approach was used to represent the cage flexibility and was validated through an ANSYS forced response analyses of the cage. Results from the newly developed Flexible Cage Model (FCM) and an identical numerical model employing a rigid bearing cage were compared to determine the effects of varying ball-to-cage pocket clearance and cage stiffness on cage motion and ball-to-cage pocket contact forces.
Journal Article

The Development of Terrain Pre-filtering Technique Based on Constraint Mode Tire Model

2015-09-01
2015-01-9113
The vertical force generated from terrain-tire interaction has long been of interest for vehicle dynamic simulations and chassis development. To improve simulation efficiency while still providing reliable load prediction, a terrain pre-filtering technique using a constraint mode tire model is developed. The wheel is assumed to convey one quarter of the vehicle load constantly. At each location along the tire's path, the wheel center height is adjusted until the spindle load reaches the pre-designated load. The resultant vertical trajectory of the wheel center can be used as an equivalent terrain profile input to a simplified tire model. During iterative simulations, the filtered terrain profile, coupled with a simple point follower tire model is used to predict the spindle force. The same vehicle dynamic simulation system coupled with constraint mode tire model is built to generate reference forces.
Technical Paper

The Computed Structure of a Combusting Transient Jet Under Diesel Conditions

1998-02-23
981071
Numerical computations of combusting transient jets are performed under diesel-like conditions. Discussions of the structure of such jets are presented from global and detailed points of view. From a global point of view, we show that the computed flame heights agree with deductions from theory and that integrated soot mass and heat release rates are consistent with expected trends. We present results of several paramaters which characterise the details of the jet structure. These are fuel mass fractions, temperature, heat release rates, soot and NO. Some of these parameters are compared with the structure of a combusting diesel spray as deduced from measurements and reported in the literature. The heat release rate contours show that the region of chemical reactions is confined to a thin sheet as expected for a diffusion flame. The soot contour plots appear to agree qualitatively with the experimental observations.
Technical Paper

Surrogate-Based Global Optimization of Composite Material Parts under Dynamic Loading

2018-04-03
2018-01-1023
This work presents the implementation of the Efficient Global Optimization (EGO) approach for the design of composite materials under dynamic loading conditions. The optimization algorithm is based on design and analysis of computer experiments (DACE) in which smart sampling and continuous metamodel enhancement drive the design towards a global optimum. An expected improvement function is maximized during each iteration to locate the designs that update the metamodel until convergence. The algorithm solves single and multi-objective optimization problems. In the first case, the penetration of an armor plate is minimized by finding the optimal fiber orientations. Multi-objective formulation is used to minimize the intrusion and impact acceleration of a composite tube. The design variables include the fiber orientations and the size of zones that control the tube collapse.
Technical Paper

Surfactant Biodegradation for Application to Advanced Life Support Water Recycling Systems

2004-07-19
2004-01-2513
Complete reuse of graywater will be essential during long duration human space missions. The highest loaded and most important component to remove from graywater is surfactant, the active ingredient in soaps and detergents. When considering a biological treatment system for processing of graywater, surfactant biodegradability becomes a very important consideration. Surfactants should be chosen that are degraded at a fast rate and yield inconsequential degradation byproducts. Experiments conducted for this research examined the biodegradation of the surfactants in Pert Plus for Kids, disodium cocoamphodiacetate (DSCADA) and sodium laureth-3 sulfate (SLES), using respirometry. Rates of CO2 production, or ultimate degradation, are reported. DSCADA was found to be toxic to bacteria when present at 270 ppm whereas no toxicity was observed during experiments with SLES.
Technical Paper

Surface Pressure Fluctuations in Separated-Reattached Flows Behind Notched Spoilers

2007-05-15
2007-01-2399
Notched spoilers may be used to suppress flow-induced cavity resonance in vehicles with open sunroofs or side windows. The notches are believed to generate streamwise vortices that break down the structure of the leading edge cross-stream vortices predominantly responsible for the cavity excitation. The objectives of the present study were to gain a better understanding of the buffeting suppression mechanisms associated with notched spoilers, and to gather data for computational model verification. To this end, experiments were performed to characterize the surface pressure field downstream of straight and notched spoilers mounted on a rigid wall to observe the effects of the notches on the static and dynamic wall pressure. Detailed flow velocity measurements were made using hot-wire anemometry. The results indicated that the presence of notches on the spoiler reduces drag, and thus tends to move the flow reattachment location closer to the spoiler.
Technical Paper

Structural Damping by the Use of Fibrous Materials

2015-06-15
2015-01-2239
Because of the increasing concern with vehicle weight, there is an interest in lightweight materials that can serve several functions at once. Here we consider the vibration damping performance provided by an “acoustical” material (i.e., a fibrous layer that would normally be used for airborne noise control). It has been previously established that the vibration of panel structures creates a non-propagating nearfield in the region close to the panel. In that region, there is an oscillatory, incompressible fluid flow parallel to the panel whose strength decays exponentially with distance from the panel. When a fibrous medium is placed close to the panel in the region where the oscillatory nearfield is significant, energy is dissipated by the viscous interaction of the flow and the fibers, and hence the panel vibration is damped. The degree of panel damping is then proportional to the energy removed from the nearfield by the viscous interaction with the fibrous medium.
Technical Paper

Sound Transmission Through Elastomeric Sealing Systems

2001-04-30
2001-01-1411
The sound barrier performance of elastomeric vehicle weather seals was investigated. Experiments were performed for one bulb seal specimen following a reverberation room method. The seal wall vibration was measured using a laser Doppler vibrometer. The acoustic pressure near the seal surface was measured simultaneously, allowing the sound intensities on both side of the seal, and the sound transmission loss to be evaluated. The vibration response of the bulb seal and its sound transmission loss were then computed using the finite element method. Model predictions for the same seal geometry were found to be in excellent agreement with the experimental data within the frequency range of interest, comprised between 500 Hz and 4000 Hz.
Technical Paper

Simultaneous Biodegradation of a Two-Phase Fluid: Discolored Biofilm Issues

2006-07-17
2006-01-2256
Three replicate aerobic-heterotrophic biotrickling filters were designed to promote the simultaneous biodegradation of graywater and a waste gas containing NH3, H2S and CO2. Upon visual observation of discolored solids, it was originally hypothesized that gas-phase CO2 concentrations were excessive, causing regions of anoxic zones to form within the biotrickling filters. Observed discolored (black) biofilm of this nature is typically assumed to be either lysed bacterial cells or anaerobic regions, implying alteration of operational conditions. Solid (biofilm) samples were collected in the presence and absence of gas-phase wastestream(s) to determine if the gas-phase contaminants were contributing to the solid-phase discoloration. Two sets of experiments (shaker flask and solids characterization) were conduced to determine the nature of the discolored solids. Results indicated that the discolored solids were neither anaerobic bacteria nor lysed cells.
Technical Paper

Simulation of MADMEL Power Systems Components

1998-04-21
981258
Detailed computer models of system components for More Electric Aircraft have been developed using the Advanced Control System Language (ACSL) and its graphical front-end, Graphic Modeller. Among the devices modeled are a wound-rotor synchronous generator with parallel bridge-rectifier outputs, a switched-reluctance generator, and various loads including a DC-DC converter, an inverter-driven induction motor, and an electro-hydrostatic actuator. Results from the simulations are presented together with corroborating experimental test results.
Technical Paper

Simulation of Air Quality in ALS System with Biofiltration

2005-07-11
2005-01-3111
Most of the gaseous contaminants generated inside ALS (Advanced Life Support) cabins can be degraded to some degree by microbial degradation in a biofilter. The entry of biofiltration techniques into ALS will most likely involve integration with existing physico-chemical methods. However, in this study, cabin air quality treated by only biofiltration was predicted using the one-box and biofiltration models. Based on BVAD (Baseline Values and Assumptions Document) and SMAC (Spacecraft Maximum Allowable Concentrations), ammonia and carbon monoxide will be the critical compounds for biofilter design and control. Experimentation is needed to identify the pertinent microbial parameters and removal efficiency of carbon monoxide and to validate the results of this preliminary investigation.
Technical Paper

Simulation Techniques in Predicting Multi Cylinder Compressor Suction Pulsations

2004-03-08
2004-01-0911
Noise Vibration Harshness (NVH) is one of the key factors in selecting and designing Automotive A/C systems. This paper will deal with the analysis of pressure pulsation in the suction manifold of a multi-cylinder compressor. Numerical simulation methods have been developed to model and simulate the compression cycle, valve dynamics and mass flow rate into the compressor cylinder. The model was also enhanced to include pressure fluctuations due to the interactions between multiple cylinders in the suction manifold. The analytical results from the simulation program compared favorably with the experimental results. The validation and confirmation of the simulation model was successfully accomplished thus yielding a very valuable tool that could be used during the design stage.
Technical Paper

Research on Joining High Pressure Die Casting Parts by Self-Pierce Riveting (SPR) Using Ring-Groove Die Comparing to Heat Treatment Method

2020-04-14
2020-01-0222
Nowadays, the increasing number of structural high pressure die casting (HPDC) aluminum parts need to be joined with high strength steel (HSS) parts in order to reduce the weight of vehicle for fuel-economy considerations. Self-Pierce Riveting (SPR) has become one of the strongest mechanical joining solutions used in automotive industry in the past several decades. Joining HPDC parts with HSS parts can potentially cause joint quality issues, such as joint button cracks, low corrosion resistance and low joint strength. The appropriate heat treatment will be suggested to improve SPR joint quality in terms of cracks reduction. But the heat treatment can also result in the blister issue and extra time and cost consumption for HPDC parts. The relationship between the microstructure of HPDC material before and after heat treatment with the joint quality is going to be investigated and discussed for interpretation of cracks initiation and propagation during riveting.
Technical Paper

Recent Developments in a Novel Blended Hydraulic Hybrid Transmission

2014-09-30
2014-01-2399
A novel Blended Hydraulic Hybrid transmission architecture is presented in this paper with benefits over conventional designs. This novel configuration combines elements of a hydrostatic transmission, a parallel hybrid, and a selectively connectable high pressure accumulator using passive and actively controlled logic elements. Losses are reduced compared to existing series hybrid transmissions by enabling the units to operate efficiently at pressures below the current high pressure accumulator's pressure. A selective connection to the high pressure accumulator also allows for higher system precharge which increases regenerative braking torque and energy capture with little determent to system efficiency. Finally operating as a hydrostatic transmission increases transmission stiffness (i.e. driver response) and may improve driver feel in certain situations when compared to a conventional series hybrid transmission.
X