Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Performance Assessment of a Single Jet, Dual Diverging Jets, and Dual Converging Jets in an Auxiliary Fueled Turbulent Jet Ignition System

2018-04-03
2018-01-1135
An auxiliary fueled prechamber ignition system can be used in an IC engine environment to provide lean limit extension with minimal cyclic variability and low emissions. Geometry and distribution of the prechamber orifices form an important criterion for performance of these systems since they are responsible for transferring and distributing the ignition energy into the main chamber charge. Combustion performance of nozzles with a single jet, dual diverging jets and dual converging jets for a methane fueled prechamber ignition system is evaluated and compared in a rapid compression machine (RCM). Upon entering the main chamber, the dual diverging jets penetrate the main chamber in opposite directions creating two jet tips, while the dual converging jets, after exiting the orifices, converge into a single location within the main chamber. Both these configurations minimize jet-wall impingement compared to the single jet.
Journal Article

Optical Engine Operation to Attain Piston Temperatures Representative of Metal Engine Conditions

2017-03-28
2017-01-0619
Piston temperature plays a major role in determining details of fuel spray vaporization, fuel film deposition and the resulting combustion in direct-injection engines. Due to different heat transfer properties that occur in optical and all-metal engines, it becomes an inevitable requirement to verify the piston temperatures in both engine configurations before carrying out optical engine studies. A novel Spot Infrared-based Temperature (SIR-T) technique was developed to measure the piston window temperature in an optical engine. Chromium spots of 200 nm thickness were vacuum-arc deposited at different locations on a sapphire window. An infrared (IR) camera was used to record the intensity of radiation emitted by the deposited spots. From a set of calibration experiments, a relation was established between the IR camera measurements of these spots and the surface temperature measured by a thermocouple.
Technical Paper

Numerical Simulations of Turbulent Sprays with a Multicomponent Evaporation Model

2013-04-08
2013-01-1603
A multicomponent droplet evaporation model which discretizes the one-dimensional mass and temperature profiles inside a droplet with a finite volume method has been developed and implemented into a large-eddy simulation (LES) model for spray simulations. The LES and multicomponent models were used along with the KH-RT secondary droplet breakup model to simulate realistic fuel sprays in a closed vessel. The effect of various spray and ambient gas parameters on the liquid penetration length of different single component and multicomponent fuels was investigated. The numerical results indicate that the spray penetration length decreases non-linearly with increasing gas temperature or pressure and is less sensitive to changes in ambient gas conditions at higher temperatures or pressures. The spray models and LES were found to predict the experimental results for n-hexadecane and two multicomponent surrogate diesel fuels reasonably well.
Technical Paper

Numerical Simulations in a High Swirl Methanol-Fueled Directly-Injected Engine

2003-10-27
2003-01-3132
Three-dimensional transient simulations using KIVA-3V were conducted on a 4-stroke high-compression ratio, methanol-fueled, direct-injection (DI) engine. The engine had two intake ports that were designed to impart a swirling motion to the intake air. In some cases, the intake system was modified, by decreasing the ports diameter in order to increase the swirl ratio. To investigate the effect of adding shrouds to the intake valves on swirl, two sets of intake valves were considered; the first set consisted of conventional valves, and the second set of valves had back shrouds to restrict airflow from the backside of the valves. In addition, the effect of using one or two intake ports on swirl generation was determined by blocking one of the ports.
Technical Paper

In-cylinder Combustion Visualization of a Direct-injection Spark-ignition Engine with Different Operating Conditions and Fuels

2012-09-10
2012-01-1644
A direct-injection and spark-ignition single-cylinder engine with optical access to the cylinder was used for the combustion visualization study. Gasoline and ethanol-gasoline blended fuels were used in this investigation. Experiments were conducted to investigate the effects of fuel injection pressure, injection timing and the number of injections on the in-cylinder combustion process. Two types of direct fuel injectors were used; (i) high-pressure production injector with fuel pressures of 5 and 10 MPa, and (ii) low-pressure production-intent injector with fuel pressure of 3 MPa. Experiments were performed at 1500 rpm engine speed with partial load. In-cylinder pressure signals were recorded for the combustion analyses and synchronized with the high-speed combustion imaging recording. Visualization results show that the flame growth is faster with the increment of fuel injection pressure.
Technical Paper

Evaluation of Turbulence Statistics from Engine Cooling Fan Velocity Measurements

2001-05-14
2001-01-1710
The present communication reports on processing and interpreting velocity measurements in the wake of a cooling fan. Velocity data are typically phase averaged to create statistics that would be observed in a rotating frame of reference. The difference between any given instantaneous measurement and the phase mean value is often referred to as the fluctuating component of velocity. These deviations can be caused by a variety of mechanisms (blade vibration for example) and do not necessarily represent “turbulence”. A different approach using an eigenfunction decomposition of the data is used on a sample data set to help distinguish between cycle-to-cycle variations and turbulence.
Journal Article

Combustion Visualization, Performance, and CFD Modeling of a Pre-Chamber Turbulent Jet Ignition System in a Rapid Compression Machine

2015-04-14
2015-01-0779
Turbulent jet ignition is a pre-chamber ignition enhancement method that produces a distributed ignition source through the use of a chemically active turbulent jet which can replace the spark plug in a conventional spark ignition engine. In this paper combustion visualization and characterization was performed for the combustion of a premixed propane/air mixture initiated by a pre-chamber turbulent jet ignition system with no auxiliary fuel injection, in a rapid compression machine. Three different single orifice nozzles with orifice diameters of 1.5 mm, 2 mm, and 3 mm were tested for the turbulent jet igniter pre-chamber over a range of air to fuel ratios. The performance of the turbulent jet ignition system based on nozzle orifice diameter was characterized by considering both the 0-10 % and the 10-90 % burn durations of the pressure rise due to combustion.
Technical Paper

CFD Modeling and Experimental Analysis of a Homogeneously Charged Turbulent Jet Ignition System in a Rapid Compression Machine

2017-03-28
2017-01-0557
Three dimensional numerical simulation of the transient turbulent jet and ignition processes of a premixed methane-air mixture of a turbulent jet ignition (TJI) system is performed using Converge computational software. The prechamber initiated combustion enhancement technique that is utilized in a TJI system enables low temperature combustion by increasing the flame propagation rate and therefore decreasing the burn duration. Two important components of the TJI system are the prechamber where the spark plug and injectors are located and the nozzle which connects the prechamber to the main chamber. In order to model the turbulent jet of the TJI system, RANS k-ε and LES turbulent models and the SAGE chemistry solver with a reduced mechanism for methane are used.
Technical Paper

Analysis of Variations in Fuel Spray, Combustion, and Soot Production in an Optical Diesel Engine Operating Under High Simulated Exhaust Gas Recirculation Operating Conditions

2016-04-05
2016-01-0727
In-cylinder visualization experiments were completed using an International VT275-based optical DI Diesel engine operating under high simulated exhaust gas recirculation combustion conditions. Experiments were run at four load conditions to examine variations in fuel spray, combustion, and soot production. Mass fraction burned analyses of pressure data were used to investigate the combustion processes of the various operating conditions. An infrared camera was used to visualize fuel spray events and exothermic combustion gases. A visible, high-speed camera was used to image natural luminosity produced by soot. The recorded images were post-processed to analyze the fuel spray, the projected exothermic areas produced by combustion, as well as soot production of different load conditions. Probability maps of combustion and fuel spray occurrence in the cylinder are presented for insight into the combustion processes of the different conditions.
Journal Article

Air-to-Fuel and Dual-Fuel Ratio Control of an Internal Combustion Engine

2009-11-02
2009-01-2749
Air-to-fuel (A/F) ratio is the mass ratio of the air-to-fuel mixture trapped inside a cylinder before combustion begins, and it affects engine emissions, fuel economy, and other performances. Using an A/F ratio and dual-fuel ratio control oriented engine model, a multi-input-multi-output (MIMO) sliding mode control scheme is used to simultaneously control the mass flow rate of both port fuel injection (PFI) and direct injection (DI) systems. The control target is to regulate the A/F ratio at a desired level (e.g., at stoichiometric) and fuel ratio (ratio of PFI fueling vs. total fueling) to any desired level between zero and one. A MIMO sliding mode controller was designed with guaranteed stability to drive the system A/F and fuel ratios to the desired target under various air flow disturbances.
Technical Paper

A Qualitative Comparison of the Macroscopic Spray Characteristics of Gasoline Mixtures and their Multi-Component Surrogates Using a Rapid Compression Machine

2021-04-06
2021-01-0558
Rapid Compression Machines (RCM) offer the ability to easily change the compression ratio and the pressure/mixture composition/temperature to gather ignition delay data at various engine relevant conditions. Therefore, RCMs with optical access to the combustion chamber can provide an effective way to analyze macroscopic spray characteristics needed to understand the spray injection process and for spray model development, validation and calibration at conditions that are suitable for engines. Fuel surrogates can help control fuel parameters, develop models for spray and combustion, and perform laser diagnostics with known fluorescence characteristics. This study quantifies and evaluates the macroscopic spray characteristics of multicomponent gasoline surrogates in comparison to their gasoline counterparts, under gasoline direct injection (GDI) engine conditions.
Technical Paper

A High Speed Flow Visualization Study of Fuel Spray Pattern Effect on Mixture Formation in a Low Pressure Direct Injection Gasoline Engine

2007-04-16
2007-01-1411
In developing a direct injection gasoline engine, the in-cylinder fuel air mixing is key to good performance and emissions. High speed visualization in an optically accessible single cylinder engine for direct injection gasoline engine applications is an effective tool to reveal the fuel spray pattern effect on mixture formation The fuel injectors in this study employ the unique multi-hole turbulence nozzles in a PFI-like (Port Fuel Injection) fuel system architecture specifically developed as a Low Pressure Direct Injection (LPDI) fuel injection system. In this study, three injector sprays with a narrow 40° spray angle, a 60°spray angle with 5°offset angle, and a wide 80° spray angle with 10° offset angle were evaluated. Image processing algorithms were developed to analyze the nature of in-cylinder fuel-air mixing and the extent of fuel spray impingement on the cylinder wall.
Technical Paper

A Computational Study of the Effects of Spark Location on the Performance of a Turbulent Jet Ignition System

2016-04-05
2016-01-0608
In this purely computational study, fluid dynamic simulations with active combustion are performed for a Turbulent Jet Ignition (TJI) system installed in a rapid compression machine. The simulations compare the effects that the location of the TJI system’s spark ignition source inside the TJI’s prechamber have on the combustion within the system through the use of four simulations, which are all identically setup with the same initial and boundary conditions except for the location of their respective ignition sources. The four ignition sources are located along the centerline of the axisymmetric prechamber and at varied distances from the orifice exit of the prechamber. Comparison of the simulations demonstrate that the locations furthest from the orifice produce better main chamber ignition as reflected in shorter 0-10% mass fraction burn times. Meanwhile all three of the test cases that were not closest to the orifice all produced similar 10-90% mass fraction burn times.
X