Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

eFMI (FMI for Embedded Systems) in AUTOSAR for Next Generation Automotive Software Development

2021-09-22
2021-26-0048
Nowadays automobiles are getting smart and there is a growing need for the physical behavior to become part of its software. This behavior can be described in a compact form by differential equations obtained from modeling and simulation tools. In the offline simulation domain the Functional Mockup Interface (FMI) [3], a popular standard today supported by many tools, allows to integrate a model with solver (Co-Simulation FMU) into another simulation environment. These models cannot be directly integrated into embedded automotive software due to special restrictions with respect to hard real-time constraints and MISRA compliance. Another architectural restriction is organizing software components according to the AUTOSAR standard which is typically not supported by the physical modeling tools. On the other hand AUTOSAR generating tools do not have the required advanced symbolic and numerical features to process differential equations.
Technical Paper

Vehicle Dynamics Control for Commercial Vehicles

1997-11-17
973284
This paper presents the Vehicle Dynamics Control (VDC) for commercial vehicles developed by BOSCH. The underlying physical concept is discussed in the second section after a short introduction. The third section shows the computer simulation used in the development process. Section four describes the controller structure of the VDC system. In Section five the use and effectiveness of VDC for commercial vehicles is shown in different critical driving situations. This is done by using measured data collected during testing (lane change, circular track) and it demonstrates that the safety improvements achieved for passenger cars are also possible for commercial vehicles.
Technical Paper

VDC, The Vehicle Dynamics Control System of Bosch

1995-02-01
950759
VDC is a new active safety system for road vehicles which controls the dynamic vehicle motion in emergency situations. From the steering angle, the accelerator pedal position and the brake pressure the desired motion is derived while the actual vehicle motion is derived from the yaw rate and the lateral acceleration. The system regulates the engine torque and the wheel brake pressures using traction control components to minimize the difference between the actual and the desired motion. Included is also a safety concept which supervises the proper operation of the components and the software.
Technical Paper

VDC Systems Development and Perspective

1998-02-23
980235
Since its introduction in March 1995, the market demand for Vehicle Dynamic Control systems (VDC) has increased rapidly. Some car manufacturers have already announced their plans to introduce VDC on all their models. Particularly for compact and subcompact cars the system price needs to be reduced without sacrificing safety and performance. Originally designed for optimal performance with economically feasible components (sensors, hydraulics and microcontrollers) and using a unified control approach for all vehicle operating situations the system has been extended to include various drive concepts and has continuously been improved regarding performance, safety and cost. This paper describes the progress made in the development of the Bosch VDC system with regard to the design of the hydraulic system, the sensors, the electronic control unit, the control algorithm and safety.
Technical Paper

Upgrade Levels of the Bosch ABS

1986-02-01
860508
The Bosch ABS for passenger cars which has been in production since 1978 has been described in numerous publications. Following the gathering of extensive experience with the Bosch ABS and its installation in the different models of passenger car, the concept has been revised with various upgrade levels in order to further optimize braking performance on µ-split road surfaces with different right/left adhesion coefficients, in order further to improve the operation of the system when braking on very slippery road surfaces and also to adapt the control algorithm to four-wheel-drive vehicles with differential locks.
Technical Paper

Towards “Vision Zero”

2012-04-16
2012-01-0288
“Safe Driving” is an essential world-wide automotive requirement. The demand for “Safe Driving” is particularly high in industrialized countries, but it is also growing in the fast-developing nations. However, the annual reduction of serious traffic injuries and fatalities is still too low and the target to halve the number of people killed in traffic in the European Union from 2001 to 2010 has not been met. Essential influences to close this gap include legislation, road traffic regulations and monitoring, technical improvement of vehicles including active and passive safety systems, the increase of the equipment rate for safety functions and the re-design of traffic infrastructure for safety reasons. During the last years several countries in Europe started to consider these aspects combined in an integrated and general traffic safety policy, i.e. “Vision Zero” in Sweden.
Technical Paper

Towards Establishing Continuous-X Pipeline Using Modular Software-in-the-Loop Test Environments

2021-09-22
2021-26-0412
Software-in-the-Loop (SiL) test environments are the ideal virtual platforms for enabling continuous-development, -integration, -testing -delivery or -deployment commonly referred as Continuous-X (CX) of the complex functionalities in the current automotive industry. This trend especially is contributed by several factors such as the industry wide standardization of the model exchange formats, interfaces as well as architecture definitions. The approach of frontloading software testing with SiL test environments is predominantly advocated as well as already adopted by various Automotive OEMs, thereby the demand for innovating applicable methods is increasing. However, prominent usage of the existing monolithic architecture for interaction of various elements in the SiL environment, without regarding the separation between functional and non-functional test scope, is reducing the usability and thus limiting significantly the cost saving potential of CX with SiL.
Technical Paper

Tool Support for Analyzing and Optimization Methods in Early Brake System Sizing Phases

2000-03-06
2000-01-0442
The manufacturers of passenger cars increasingly assign development and production of complete subsystems to the supplying industry. A brake system supplier has to give predictions about system quality and performance long time before the first prototypical system is built or even before the supplier gets the order for system development. Nowadays, the usage of computer-aided system design and simulation is essential for that task. This article presents a tool designed to support the development process. A special focus will be on how to define quality. A formal definition of quality is provided, illustrated and motivated by two examples.
Technical Paper

Time Resolved Spray Characterisation in a Common Rail Direct-Injection Production Type Diesel Engine Using Combined Mie/LIF Laser Diagnostics

2003-03-03
2003-01-1040
This study reports on laser-based diagnostics to temporally track the evolution of liquid and gaseous fuel in the cylinder of a direct injection production type Diesel engine. A two-dimensional Mie scattering technique is used to record the liquid phase and planar laser-induced fluorescence of Diesel is used to track both liquid and vaporised fuel. LIF-Signal is visible in liquid and gas phase, Mie scattering occurs only in zones where fuel droplets are present. Distinction between liquid and gaseous phase becomes therefore possible by comparing LIF- and Mie-Signals. Although the information is qualitative in nature, trends of spray evolution are accessible. Within this study a parametric variation of injection pressure, in-cylinder conditions such as gas temperature and pressure as well as piston geometry are discussed. Observations are used to identify the most sensitive parameters and to qualitatively describe the temporal evolution of the spray for real engine conditions.
Technical Paper

Three Years Field Experience with the Lambda-Sensor in Automotive Control Systems

1980-02-01
800017
The temperature mappings of Lambda-Sensors in more than 30 different applications with closed-loop systems are presented. A new measuring technique is introduced, which allows to estimate the control performance of the Lambda-sensor in a laboratory test. The special influences of very hot (> 900 °C) and cold (< 400 °C) applications and of lead poisoning upon this control performance are discussed. As a result there are given some guidelines for the user of Lambda-sensors.
Technical Paper

Thermal Simulation within the Brake System Design Process

2002-10-06
2002-01-2587
During the acquisition phase brake system supplier have to make predictions on a system's thermal behavior based on very few reliable parameters. Increasing system knowledge requires the usage of different calculation models along with the progress of the project. Adaptive modeling is used in order to integrate test results from first prototypes or benchmark vehicles. Since changes in the brake force distribution have a great impact on the simulation results fading conditions of the linings have to be integrated as well. The principle of co-simulation is used in order to use the actual brake force distribution of the system.
Technical Paper

The Robert Bosch In-Line Pump for Diesel Engines, Type MW, Design, Application and Further Development

1979-02-01
790901
The range of Robert Bosch in-line pumps is designed for engines with cylinder outputs of up to 200 kW. Within this family of pumps the MW pump is used in small IDI engines and medium-sized DI engines with cylinder outputs in the region of 30 kW. More stringent exhaust emission legislation and the need to ensure optimum fuel economy call for efficient fuel-injection systems for diesel engines. In both of its designs the new MW pump meets these more exacting requirements and forms the contribution of Robert Bosch GmbH toward developing advanced diesel engines.
Technical Paper

The Influence of Hydro Grinding at VCO Nozzles on the Mixture Preparation in a DI Diesel Engine

1996-02-01
960867
The hydro grinding process can be used for valve covered orifice (VCO) nozzle production. A comprehensive numerical and experimental investigation was performed to determine the influence of hydro grinding (HG) at VCO nozzles on the mixture preparation in pressure charged high speed direct injection diesel engines. Samples of five hole VCO nozzles with defined grades of HG and different sprayhole diameters were selected to ensure a constant mass flow at a fixed feeding pressure for comparable engine tests. The simulation of the internal flow shows a more symmetrical velocity profile indicating less shear flow and lower turbulence intensities at the orifice with increased HG grade. From these results an enhanced atomization at further penetration depth and reduced atomization close to the nozzle could be expected. This was confirmed by measuring the spray momentum distribution and spray tip speed by mechanical and optical probes in high pressure vessels.
Technical Paper

The Computation of Airbag Deployment Times with the Help of Precrash Information

2002-03-04
2002-01-0192
Modern airbag control units are required to compute airbag deployment times with a high degree of precision. Therefore, the crash situation has to be recognized unambiguously, i.e. the goal is to obtain precise information about the relative speed, the barrier and the position of impact. One way of achieving this aim is via the implementation of a precrash sensing system using radar sensors. With these sensors, the relative closing velocity and the time-to-impact can be measured, thereby enabling a precise analysis of the crash situation. In this paper the algorithm for the computation of the airbag deployment decision will be presented.
Technical Paper

The 3D-CFD Contribution to H2 Engine Development for CV and Off-Road Application

2024-07-02
2024-01-3017
The hydrogen engine is one of the promising technologies that enables carbon-neutral mobility, especially in heavy-duty on- or off-road applications. In this paper, a methodological procedure for the design of the combustion system of a hydrogen-fueled, direct injection spark ignited commercial vehicle engine is described. In a preliminary step, the ability of the commercial 3D computational fluid dynamics (CFD) code AVL FIRE classic to reproduce the characteristics of the gas jet, introduced into a quiescent environment by a dedicated H2 injector, is established. This is based on two parts: Temporal and numerical discretization sensitivity analyses ensure that the spatial and temporal resolution of the simulations is adequate, and comparisons to a comprehensive set of experiments demonstrate the accuracy of the simulations. The measurements used for this purpose rely on the well-known schlieren technique and use helium as a safe substitute for H2.
Technical Paper

Technology For Electronic Diesel Control

2004-01-16
2004-28-0063
In the last decades the development of Diesel engines has made substantial progress. New, powerful and scalable injection systems have been introduced. In consequence Diesel systems are continuously gaining market share in many places of the world. Advanced direct injection engines with systems like the electronically controlled distributer pump, the unit injection system and of course the common rail system are replacing the chamber engines in all automotive applications. This is all unthinkable without the electronic management of these injection systems by means of Electronic Diesel Control units (EDC). The following presentation describes the status and some future trend of technology of EDCs with particular emphasis on functional and on software development. It also outlines the challenge of global automotive industry that requires global development and application services from its tier 1 suppliers.
Technical Paper

System Architecture and Algorithm for Advanced Passive Safety by Integration of Surround Sensing Information

2005-04-11
2005-01-1233
Surround sensing methods provide information which can be used in PRECRASH functionalities for advanced control of the passenger protection system. The relevant data (closing velocity (cv), time to impact (tti), and offset of contact point (Δy)) are determined with a Predictive Safety System and transmitted to the airbag control unit for further processing in the PRECRASH algorithm. The PRECRASH algorithm controls both, the activation of reversible restraints and the deployment of irreversible restraints. Therefore it consists of two components: The PREFIRE and the PRESET algorithm. The PREFIRE algorithm uses the PRECRASH information for the activation of the reversible belt pretensioner in advance of a crash to reduce chest load in the crash phase. The PRESET algorithm calculates the trigger decision for deployment of pyrotechnical restraints. Inputs of the PRESET algorithm are the PRECRASH information as well as the acceleration signal.
Technical Paper

Standardization and Cost Optimization of ABS Ecus

1998-10-19
98C004
ABS has proven to be a contribution to active safety. The introduction of traction control (TC) in 1986 and even more significantly, the introduction of vehicle dynamics control (VDC) in 1995 have been further milestones in this field. The functionality of these systems (ABS, TC, VDC) is mainly determined by the electronic control unit (ECU). A system supplier who is to provide an ECU-platform concept including a large functionality, while meeting customer specific requirements at an optimized price, needs standardization strategies. This paper describes a standardization concept for an ABS ECU, beginning with the basic ABS HW and SW design and the extension to TC and VDC. It also shows the degree of flexibility, the benefits for the vehicle manufacturer and the possible cost optimization for the system supplier.
Technical Paper

Software Controlled Homogeneity Analysis of Headlamp Light Distribution

1999-03-01
1999-01-0700
This paper will describe the procedures that will enhance the possibilities of qualitative evaluation of headlamp light distributions. A basis will be the description of a light distribution coming only from reflector geometries, i.e. headlamps with clear outer lens design. Further steps of evaluation, as visualization and homogeneity analysis become more and more important for a headlamp evaluation. The recently developed tools can support both the headlamp manufacturer and the car manufacturer in finding a common understanding in headlamp performance of a projected car at a very early stage of development.
Technical Paper

Simulation, Performance and Quality Evaluation of ABS and ASR

1988-02-01
880323
The article describes the methods, which are employed in order to ensure high performance, safety and quality of ABS and ASR. System behaviour is evaluated and optimized by computer simulation. Moreover, a real-time simulator has been developed by which the consequences of hardware defects can be investigated systematically, Despite the increasing use of simulation the testing of vehicles remains the most important tool for system evaluation. For that purpose, a digital data acquisition system has been developed and objective evaluation criteria have been established. In order to achieve high product quality the Failure Mode and Effect Analysis (FMEA) is carried out at an early phase of development. Another prerequisite for high product quality is thorough durability and endurance testing before release of production.
X