Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Yaw Rate Sensor for Vehicle Dynamics Control System

1995-02-01
950537
From the beginning of 1995 on, RB will start the production of the Vehicle Dynamics Control System. A key part of this system is the Yaw Rate Sensor described in this paper. The basic requirements for this sensor for automotive applications are: mass producibility, low cost, resistance against environmental influences (such as temperature, vibrations, EMI), stability of all characteristics over life time, high reliability and designed-in safety. Bosch developed a sensor on the basis of the “Vibrating Cylinder”. The sensor will be introduced into mass production in beginning of 1995.
Technical Paper

Variable Orifice Geometry Verified on the Two-Phase Nozzle (VRD)

1995-02-01
950081
Innovative solutions for reducing particulate emissions will be necessary in order to comply with the even more stringent exhaust-gas standards of the future. The potential of a diesel nozzle with variable orifice geometry has long been common knowledge in the area of engine construction. But up to now, a fully functional solution of such a nozzle has not appeared which operates with a reduced orifice at low engine speeds and/or low loads. Here with regard to target costing, the requirements implicit in function and manufacture must also be taken into account. Using calculations on nozzle interior flow and injection-spray investigations, it will be shown which nozzle geometries best fulfill the various requirements. In order to achieve low levels of particulate emission in an engine with a combustion chamber designed for optimum use of a hole-type nozzle, the injection-spray direction and its geometry must to a large extent correspond to those of a hole-type nozzle.
Technical Paper

Variable Gas Exchange Systems for S.I. Engines - Layout and Experimental Data

1992-02-01
920296
Load control by means of early intake valve closing (EIVC) permits brake mean effective pressure (BMEP) to be improved by as much as 14 % at full load and pumping losses in part load to be reduced comparable to the unthrottled engine. Concomitant to this, though, the marginal conditions for good mixture formation and part load combustion optimized for efficiency are greatly impaired. With ideal mixture formation, improvements in specific part load consumption (BSFC) of the order of 8 to 12 % are achievable. The mixture formation which occurs at low part load in the combustion chamber itself is not effective as the charge motion induced by the inflow process with EIVC dies away rapidly and at the same time fuel still condenses. The inhomogeneities to which this gives rise impair ignition conditions and the combustion pattern, which greatly limits the actual useful work of the theoretical charge cycle benefit.
Technical Paper

Transport Fuel Options for Clean Environment

2004-01-16
2004-28-0095
Transportation needs of society has been growing at a rapid rate and to a great extent dependent on crude oil derived fuels. The crude oil supply may fall short of demand has been clearly realized and future fuel scenarios are being studied. In this background, transport fuels and their effect on exhaust emission as well as greenhouse gases have become the driving force for their interactions with engine and emission control systems. In this paper, various transport fuel options to supplement/replace the existing fuel supply are discussed particularly considering the Indian Transport scenario.
Technical Paper

Time-Resolved Measurement of Individual Aromatic Hydrocarbons in Automotive Exhaust at Transient Engine Operation

1995-02-01
951053
A new multicomponent exhaust gas analyzer has been applied to investigate the time-resolved concentrations of the aromatic hydrocarbon exhaust components benzene, toluene, xylene, trimethyl benzene under dynamic engine operation, such as sudden change of speed and load, misfiring and switching off the fuel mixture control. The analyzer consisting of a compact laser mass spectrometer is capable of measuring the concentrations of the individual aromatic hydrocarbon compounds simultaneously with 1 ppm sensitivity at a sampling rate of 50 Hz corresponding to a sampling period of 20 ms. High concentration peaks are observed for these substances at instationary motor operation. However, whereas the real-time concentrations of toluene, xylene, and trimethyl benzene show equal dependence on motor speed and load a different behavior has been observed for benzene even during the emission phase of single combustion cycles.
Technical Paper

Time Resolved Spray Characterisation in a Common Rail Direct-Injection Production Type Diesel Engine Using Combined Mie/LIF Laser Diagnostics

2003-03-03
2003-01-1040
This study reports on laser-based diagnostics to temporally track the evolution of liquid and gaseous fuel in the cylinder of a direct injection production type Diesel engine. A two-dimensional Mie scattering technique is used to record the liquid phase and planar laser-induced fluorescence of Diesel is used to track both liquid and vaporised fuel. LIF-Signal is visible in liquid and gas phase, Mie scattering occurs only in zones where fuel droplets are present. Distinction between liquid and gaseous phase becomes therefore possible by comparing LIF- and Mie-Signals. Although the information is qualitative in nature, trends of spray evolution are accessible. Within this study a parametric variation of injection pressure, in-cylinder conditions such as gas temperature and pressure as well as piston geometry are discussed. Observations are used to identify the most sensitive parameters and to qualitatively describe the temporal evolution of the spray for real engine conditions.
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Technical Paper

Thermodynamic Analysis and Benchmark of Various Gasoline Combustion Concepts

2006-04-03
2006-01-0231
Novel Combustion technologies and strategies show high potential in reducing the fuel consumption of gasoline spark ignition (SI) engines. In this paper, a comparison between various gasoline combustion concepts at two representative engine operating points is shown. Advantages of the combustion concepts are analyzed using thermodynamic split of losses method. In this paper, a tool for thermodynamic assessment (Split of Losses) of conventional and new operating strategies of SI engine and its derivatives is used. Technologies, like variable valve actuation and/or gasoline direct injection, allow new strategies to run the SI engine unthrottled with early inlet valve closing (SI-VVA) combined with high EGR, charge stratification (SI-STRAT) and controlled auto ignition (CAI), also known as gasoline homogeneous charge compression ignition (HCCI). These diverse combustion concepts show thermodynamic gains that stem from several, often different sources.
Technical Paper

The Robert Bosch In-Line Pump for Diesel Engines, Type MW, Design, Application and Further Development

1979-02-01
790901
The range of Robert Bosch in-line pumps is designed for engines with cylinder outputs of up to 200 kW. Within this family of pumps the MW pump is used in small IDI engines and medium-sized DI engines with cylinder outputs in the region of 30 kW. More stringent exhaust emission legislation and the need to ensure optimum fuel economy call for efficient fuel-injection systems for diesel engines. In both of its designs the new MW pump meets these more exacting requirements and forms the contribution of Robert Bosch GmbH toward developing advanced diesel engines.
Technical Paper

The Potential of Small DI-Diesel Engines with 250 cm3/Cylinder for Passenger Car Drive Trains

1997-02-24
970838
The demand for fuel-efficient, low-displacement engines for future passenger car applications led to investigations with small DI diesel engines in the advanced engineering department at Mercedes-Benz. Single-cylinder tests were carried out to compare a 2-valve concept with 241 cm3 displacement with a 422 cm3 4-valve design, both operated with a common rail injection system. Mean effective pressures at full load were about 10 % lower with the smaller displacement. With such engines a specific power of 40 kW/I and a specific torque of about 140 Nm/I should be possible. In the current stage of optimization, penalties in fuel economy could be reduced down to values below 3 %. The “4-cylinder DI diesel engine with 1 liter displacement” is an interesting alternative to small 3 cylinder concepts with higher displacement per cylinder. An introduction into series production will not only depend on the potential for further improvement in fuel economy of such small cylinder units.
Technical Paper

The New Mercedes-Benz Engine Brake with Pulsed Decompression Valve -Decompression Valve Engine Brake (DVB)

1994-11-01
942266
During recent years there has been a continuing increase in the demands for higher braking performance of commercial vehicle engines. Mercedes-Benz had introduced the engine brake with continuously open decompression valve (‘Konstantdrossel’) into series production in 1989 as an option (1). A further increase of braking power was to be achieved while retaining the additional decompression valve in the cylinder head. For this, the decompression valve was no longer kept open during the whole working cycle (continuously open decompression valve), but only for a short period from just before compression TDC to about 90...120° crank angle after compression TDC (pulsed decompression valve). The hydraulic actuating system which opens and closes the decompression valves was developed in cooperation with Mannesmann-Rexroth GmbH, Lohr, Germany. The engine braking performance attainable with this system is shown in comparison to other known engine braking systems.
Technical Paper

The New Mercedes-Benz Engine Brake with Decompression Valve

1992-02-01
920086
During the past few years, economy of commercial vehicles has increased considerably due to higher engine outputs a+ lower engine speeds together with enhanced fuel economy. However, the average speed of commercial vehicles is not only determined by the speed attainable on level ground and on uphill gradients, but also to a large extent by the speed attainable on downhill gradients, with the latter depending on the available constant braking power. Since the displacement of commercial vehicle engines has not been increased or has even become smaller, their braking power has increased only slightly ot not at all. In order to enhance the overall economy of commercial vehicles, it was therefore necessary to increase the engine braking performance as well since the wheel brakes cannot be used for constant braking and additional systems for continuous operation are very complex.
Technical Paper

The New Common Rail Fuel System for the Duramax 6600 V8 Diesel Engine

2001-11-12
2001-01-2704
The Bosch Common Rail Fuel Injection System with the new technologies developed for the Duramax 6600 engine offer numerous performance advantages including exhaust emissions control and noise. The layout of the fuel system components and electrical parts is specifically designed to control fuel injection characteristics. The new injector and nozzle technology was integrated to achieve the required system performance. The new 1600bar fuel pump is also a prerequisite for required system performance.
Technical Paper

The New 4-Valve 6 Cylinder 3,0 Liter Mercedes-Benz Diesel Engine for the Executive Class Passenger Vehicle

1993-10-01
932875
After the introduction of four-valve technology for gasoline powered passenger cars, Mercedes-Benz consistently developed this technology also for Diesel engines. Based on the proven success of the prechamber combustion system, this new Diesel engine generation, which includes 4, 5 and 6-cylinder naturally-aspirated engines, will be the first four-valve Diesel engines to be installed in passenger cars. The naturally aspirated 3.0 liter 6-cylinder in-line engine which represents the high end of this generation will be offered for sale in all 50 states of the USA in the Executive Class models starting on January 1, 1994. Four-valve technology allows the prechamber to be located centrally between the intake and exhaust valves which results in a major improvement of the combustion process. In addition, this 6-cylinder engine has a resonance intake system controlled by two butterfly valves to maximize the volumetric efficiency of the engine.
Technical Paper

The Mercedes-Benz Group C Engines for the World Sports Prototype Racing Championships 1989 and 1990

1992-02-01
920674
The M119 HL, a twin turbocharged V8-5 I-engine, was developed by Mercedes-Benz AG for Group C World Championship Race events based on the production engine used for the Mercedes-Benz passenger car range. * Due to the fuel consumption limitation for Group C-Cars - 51 litre/ 100 km - a high efficiency race engine was required to achieve the target fuel consumption during race events using a commercially available “pump” fuel. Given these restrictions, the latest version of the M119 HL-engine had a power output of 530 kW and minimum brake specific fuel consumption values of 235 - 260 g/kWh over the engine speed range. This paper discusses the conceptual ideas behind the design of such a high-performance engine with optimized fuel consumption, especially concerning turbocharging and engine management. Furthermore, the development of the engine's mechanical components is shown in comparison to the series production engine design.
Technical Paper

The Impact of a Combustion Chamber Optimization on the Mixture Formation and Combustion in a CNG-DI Engine in Stratified Operation

2017-03-28
2017-01-0779
A previous study by the authors has shown an efficiency benefit of up to Δηi = 10 % for stratified operation of a high pressure natural gas direct injection (DI) spark ignition (SI) engine compared to the homogeneous stoichiometric operation with port fuel injection (PFI). While best efficiencies appeared at extremely lean operation at λ = 3.2, minimum HC emissions were found at λ = 2. The increasing HC emissions and narrow ignition time frames in the extremely lean stratified operation have given the need for a detailed analysis. To further investigate the mixture formation and flame propagation und these conditions, an optically accessible single-cylinder engine was used. The mixture formation and the flame luminosity have been investigated in two perpendicular planes inside the combustion chamber.
Technical Paper

The Development and Performance of the Compact SCR-Trap System: A 4-Way Diesel Emission Control System

2003-03-03
2003-01-0778
The tightening of Heavy Duty Diesel (HDD) emissions legislation throughout the world is leading to the development of emission control devices to enable HDD engines to meet the new standards. NOx and Particulate Matter (PM) are the key pollutants which these emission control systems need to address. Diesel Particulate Filters (DPFs) are already in use in significant numbers to control PM emissions from HDD vehicles, and Selective Catalytic Reduction (SCR) is a very promising technology to control NOx emissions. This paper describes the development and performance of the Compact SCR-Trap system - a pollution control device comprising a DPF-based system (the Continuously Regenerating Trap system) upstream of an SCR system. The system has been designed to be as easy to package as possible, by minimising the total volume of the system and by incorporating the SCR catalysts on annular substrates placed around the outside of the DPF-based system.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

The 3D-CFD Contribution to H2 Engine Development for CV and Off-Road Application

2024-07-02
2024-01-3017
The hydrogen engine is one of the promising technologies that enables carbon-neutral mobility, especially in heavy-duty on- or off-road applications. In this paper, a methodological procedure for the design of the combustion system of a hydrogen-fueled, direct injection spark ignited commercial vehicle engine is described. In a preliminary step, the ability of the commercial 3D computational fluid dynamics (CFD) code AVL FIRE classic to reproduce the characteristics of the gas jet, introduced into a quiescent environment by a dedicated H2 injector, is established. This is based on two parts: Temporal and numerical discretization sensitivity analyses ensure that the spatial and temporal resolution of the simulations is adequate, and comparisons to a comprehensive set of experiments demonstrate the accuracy of the simulations. The measurements used for this purpose rely on the well-known schlieren technique and use helium as a safe substitute for H2.
Technical Paper

Study on Boosted Direct Injection SI Combustion with Ethanol Blends and the Influence on the Ignition System

2011-10-04
2011-36-0196
The stricter worldwide emission legislation and growing demands for lower fuel consumption and CO2-emission require for significant efforts to improve combustion efficiency while satisfying the emission quality demands. Ethanol fuel combined with boosting on direct injection gasoline engines provides a particularly promising and, at the same time, a challenging approach. Brazil is one of the main Ethanol fuel markets with its E24 and E100 fuel availability, which covers a large volume of the national needs. Additionally, worldwide Ethanol availability is becoming more and more important, e.g., in North America and Europe. Considering the future flex-fuel engine market with growing potentials identified on downsized spark ignition engines, it becomes necessary to investigate the synergies and challenges of Ethanol boosted operation. Main topic of the present work focuses on the operation of Ethanol blends up to E100 at high loads up to 30 bar imep.
X