Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Weak Supervised Hierarchical Place Recognition with VLAD-Based Descriptor

2022-12-22
2022-01-7099
Visual Place Recognition (VPR) excels at providing a good location prior for autonomous vehicles to initialize the map-based visual SLAM system, especially when the environment changes after a long term. Condition change and viewpoint change, which influences features extracted from images, are two of the major challenges in recognizing a visited place. Existing VPR methods focus on developing the robustness of global feature to address them but ignore the benefits that local feature can auxiliarily offer. Therefore, we introduce a novel hierarchical place recognition method with both global and local features deriving from homologous VLAD to improve the VPR performance. Our model is weak supervised by GPS label and we design a fine-tuning strategy with a coupled triplet loss to make the model more suitable for extracting local features.
Technical Paper

Virtual Testing of Front Camera Module

2023-04-11
2023-01-0823
The front camera module is a fundamental component of a modern vehicle’s active safety architecture. The module supports many active safety features. Perception of the road environment, requests for driver notification or alert, and requests for vehicle actuation are among the camera software’s key functions. This paper presents a novel method of testing these functions virtually. First, the front camera module software is compiled and packaged in a Docker container capable of running on a standard Linux computer as a software in the loop (SiL). This container is then integrated with the active safety simulation tool that represents the vehicle plant model and allows modeling of test scenarios. Then the following simulation components form a closed loop: First, the active safety simulation tool generates a video data stream (VDS). Using an internet protocol, the tool sends the VDS to the camera SiL and other vehicle channels.
Technical Paper

Virtual Engine Dynamometer in Service Life Testing of Transmissions: A Comparison Between Real Engine and Electric Dynamometers as Prime Movers in Validation Test Rigs

2010-04-12
2010-01-0919
A test cell was developed for evaluating a 6-speed automatic transmission. The target vehicle had an internal combustion 5.4L gasoline V8 engine. An electric dynamometer was used to closely simulate the engine characteristics. This included generating mean torque from the ECU engine map, with a transient capability of 10,000 rpm/second. Engine inertia was simulated with a transient capability of 20,000 rpm/second, and torque pulsation was simulated individually for each piston, with a transient capability of 50,000 rpm/second. Quantitative results are presented for the correlation between the engine driven and the dynamometer driven transmission performance over more than 60 test cycles. Concerns about using the virtual engine in validation testing are discussed, and related to the high frequency transient performance required from the electric dynamometer. Qualitative differences between the fueled engine and electric driven testing are presented.
Technical Paper

Using Deep Learning to Predict the Engine Operating Point in Real-Time

2021-04-06
2021-01-0186
The engine operating point (EOP), which is determined by the engine speed and torque, is an important part of a vehicle's powertrain performance and it impacts FC, available propulsion power, and emissions. Predicting instantaneous EOP in real-time subject to dynamic driver behaviour and environmental conditions is a challenging problem, and in existing literature, engine performance is predicted based on internal powertrain parameters. However, a driver cannot directly influence these internal parameters in real-time and can only accommodate changes in driving behaviour and cabin temperature. It would be beneficial to develop a direct relationship between the vehicle-level parameters that a driver could influence in real-time, and the instantaneous EOP. Such a relationship can be exploited to dynamically optimize engine performance.
Technical Paper

Use of Experimentally Measured In-Cylinder Flow Field Data at IVC as Initial Conditions to CFD Simulations of Compression Stroke in I.C. Engines - A Feasibility Study

1994-03-01
940280
The feasibility of using experimentally determined flow fields at intake valve closing, IVC, as initial conditions for computing the in-cylinder flow dynamics during the compression stroke is demonstrated by means of a computer simulation of the overall approach. A commercial CFD code, STAR-CD, was used for this purpose. The study involved two steps. First, in order to establish a basis for comparison, the in-cylinder flow field throughout the intake and compression strokes, from intake valve opening, IVO, to top dead center, TDC, was computed for a simple engine geometry. Second, experimental initial conditions were simulated by randomly selecting and perturbing a set of velocity vectors from the computed flow field at IVC.
Technical Paper

Unmanned Terminal Vehicle Positioning System Based on Roadside Single-Line Lidar

2021-03-02
2021-01-5029
With the development of economic globalization, the speed of development of container terminals is also very rapid. Under the pressure brought by the surge in throughput, the unmanned and intelligent terminals will become the future development direction of terminals. As the cornerstone of the unmanned terminal, the positioning technology provides the most basic position information for system scheduling, path planning, real-time correction, and loading and unloading. Therefore, this paper is aimed to design a low-cost, high-precision, and easy-to-maintain unmanned dock positioning system in order to better solve the problem of unmanned dock positioning. The main research content of this paper is to design a positioning algorithm for unmanned terminal Automated Guided Vehicle (AGV) based on single-line lidar, including point cloud data acquisition, background filtering, point cloud clustering, vehicle position extraction, and result optimization.
Technical Paper

USCAR U.S. Field Trial for Automotive Polymers Recycling: Interim Findings

2000-03-06
2000-01-0735
In 1998, the United States Field Trial was chartered by the United States Council for Automotive Research/Vehicle Recycling Partnership with the objective of evaluating the feasibility of collecting and recycling automotive polymers from domestic end-of-life Vehicles (ELVs). Although ELVs are among the most widely recycled consumer products, 15-25% of their total mass must nevertheless be disposed of with no material recovery; the majority of this remainder is polymeric. Concerns regarding vehicle abandonment risks and disposal practices have resulted in the legislated treatment of ELVs in Western Europe, and in the emergence of attendant material recycling schemes. These schemes support quantitatively optimized material collection, but do not appear to be sustainable under the free-market economic conditions prevalent in North America.
Technical Paper

Tumble Vortex Characterization by Complex Moments

2018-04-03
2018-01-0207
Rotating flow inside an internal combustion engine cylinder is deliberately engineered for improved fuel-air mixing and combustion. The details of the rotating flow structure vary temporally over an engine cycle as well as cyclically at the same engine phase. Algorithms in the literature to identify these structural details of the rotating flow invariably focus on locating its center and, on occasion, measuring its rotational strength and spatial extent. In this paper, these flow structure parameters are evaluated by means of complex moments, which have been adapted from image (scalar field) recognition applications to two-dimensional flow pattern (vector field) analysis. Several additional detailed characteristics of the rotating flow pattern - the type and extent of its deviation from the ideal circular pattern, its rotational and reflectional symmetry (if exists), and thus its orientation - are also shown to be related to the first few low-order complex moments of the flow pattern.
Technical Paper

The Pulse Flame Combustor Revisited

1996-10-01
962118
The pulse flame combustor was adapted by researchers at Ford Motor Company in the early 1970s in order to produce exhaust gas simulating the combustion products of the internal combustion engine for the evaluation of automotive catalysts. Over the years, the pulse flame combustor has found application in a wide variety of research oriented tasks associated with automotive catalysts and emissions. More recent research and development efforts which have resulted due to elevated demands toward lower vehicle emission levels have prompted continuing refinements of the apparatus and effected innovative approaches to the study of emerging automotive catalyst and emission control issues with the pulse flame combustor. This report provides an overview of the operation and design evolution of the pulse flame combustor. In addition, recent applications of this laboratory device for studying automotive catalysts, alternative fuels, and other automotive emission control topics are reviewed.
Technical Paper

The Influence of Heat Treat Process and Alloy on the Surface Microstructure and Fatigue Strength of Carburized Alloy Steel

1999-03-01
1999-01-0600
Gas carburized and quenched low alloy steels typically produce surface microstructures which contain martensite, retained austenite and often NMTP's (non-martensitic transformation products). The NMTP's are caused by a reduction of surface hardenability in the carburizing process from loss of alloying elements to oxidation. Gas carburized low alloy steels such as SAE 8620 with NMTP's on the surface have been shown to have inferior bending fatigue properties when compared to more highly alloyed steels which do not form NMTP's, such as SAE 4615M. One method of minimizing the formation of oxides and eliminating NMTP formation during carburizing and quenching is to use plasma carburizing instead of conventional gas carburizing. In this study the microstructures and bending fatigue performance of plasma carburized SAE 8620 and SAE 4615M is compared to the same alloys conventionally gas carburized and quenched.
Video

The Future (& Past) of Electrified Vehicles

2011-11-04
The presentation offers a brief history of the electric vehicle and parallels the realities of those early vehicles with the challenges and solutions of the electrified vehicles coming to market today. A technology evolution for every major component of these vehicles has now made this mode of transportation viable. The Focus Electric is Ford's first electric passenger car utilizing the advanced technology developments to meet the needs of electric car buyers in this emerging market. Presenter Charles Gray, Ford Motor Co.
Technical Paper

The Continental Mark II —A Design Story—

1957-01-01
570027
STYLING the Continental Mark II with a very low silhouette without sacrificing leg room, seating comfort, and driver visibility was accomplished by using a specially designed frame and a 3-joint driveline. These two features are the basic engineering innovations which make possible the Continental's distinctive classic styling. As a result of this structural analysis, Ford has produced an automobile that, according to the author, has technical advancements that are of value to the consumer.
Technical Paper

The Application of Steady-Flow Loss Correlations to Intake Manifold Design

1993-03-01
930608
Application of steady-flow correlations to characterize flow losses in complex piping systems is well established for non-transient fluid transport engineering. As a result, the literature contains numerous correlations relating flow (or pressure) losses to the piping system geometry. The present study applies these correlations to an intake manifold of a four cylinder engine to identify regions in the manifold that contribute most significantly to the system flow loss; results showed that the primary runner entrances accounted for over half of the total system loss. With this finding, four manifolds were designed and tested on a steady-flow bench and on an engine. Reduced flow losses resulted in improved peak engine performance at the expense of low speed volumetric efficiency. Primary runner pressures at peak performance conditions were analyzed in both the time and frequency domain.
Technical Paper

Testing to Ensure the Achievement of Corporate Goals for Customer Satisfaction

1996-05-01
961276
A process for creating a Customer Correlated, Accelerated, Life Test is presented. This process, which results in a model for predicting reliability, has been applied to a cold weather piston scuff problem. In this paper, the authors will discuss development of frequency distributions for customer environmental and operational use, establishment of customer based failure criteria, development of an accelerated test based on degradation, selection of testing strategies, data analyses, and measurement techniques.
Technical Paper

Study of Flash Boiling Spray Combustion in a Spark Ignition Direct Injection Optical Engine Using Digital Image Processing Diagnostics

2019-04-02
2019-01-0252
Flash boiling spray has been proven to be a useful method in providing finer fuel droplet and stronger evaporation in favor of creating a homogeneous fuel-air mixture. Combustion characteristics of flash boiling spray are thus valuable to be investigated systematically for aiding the development of efficient internal combustion system. An experimental study of flash boiling spray combustion in a SIDI optical engine under early injection has been conducted. The fuel, Iso-octane, was used across all tests. Three fuel spray conditions experimented in the study: normal liquid, transitional flash boiling and flare flash boiling sprays, within each case that Pa/Ps ratio was set in (>1), (0.3~1), and (<0.3) respectively. A small quartz insert on the piston enables optical access for observing combustion process; non-intrusive measurements on flame radicals has been carried out using a high-speed color camera.
Technical Paper

Strain Amount and Strain Path Effects on Instrumented Charpy Toughness of Baked Third Generation Advanced High Strength Steels

2021-04-06
2021-01-0266
Third generation advanced high strength steels (AHSS) that rely on the transformation of austenite to martensite have gained growing interest for implementation into vehicle architectures. Previous studies have identified a dependency of the rate of austenite decomposition on the amount of strain and the associated strain path imposed on the sheet. The rate and amount of austenite transformation can impact the work hardening behavior and tensile properties. However, a deeper understanding of the impact on toughness, and thus crash performance, is not fully developed. In this study, the strain path and strain amounts were systematically controlled to understand the associated correlation to impact toughness in the end application condition (strained and baked). Impact toughness was evaluated using an instrumented Charpy machine with a single sheet v-notch sample configuration.
Technical Paper

Spectrogram Analysis of Accelerometer-Based Spark Knock Detection Waveforms

1997-05-20
972020
Spark knock pressure oscillations can be detected by a cylinder pressure transducer or by an accelerometer mounted on the engine block. Accelerometer-based detection is lower cost but is affected by extraneous mechanical vibrations and the frequency response of the engine block and accelerometer. The knock oscillation frequency changes during the expansion stroke because the chamber geometry is changing due to the piston motion and the burned gases are cooling. Spectrogram analysis shows the time-dependent frequency content of the pressure and acceleration signals, revealing characteristic signatures of knock and mechanical vibrations. Illustrative spectrograms are presented which yield physical insight into accelerometer-based knock detection.
Video

Smart and Connected Electrification at Ford

2012-03-27
The automotive industry continues to develop new powertrain technologies aimed at reducing overall vehicle level fuel consumption. This paper discusses the development of a new highly efficient parallel hybrid transmission for use in transversely installed powertrains for FWD applications. FEV is developing a new 7-speed hybrid transmission for transverse installation. The transmission with a design torque of 320 Nm is based on AMT (automated manual transmission) technology and uses a single electric motor. The innovative gearset layout combines the advantages of modern AMTs such as best efficiency, low costs and few components (reduced part count) with full hybrid capabilities and electric torque support during all gear shifts. Furthermore, the gear set layout allows for very short shift-times due to the favorable distribution of inertias. Other features include an A/C compressor being electrically driven by the electric motor of the transmission during engine start/stop phases.
Technical Paper

Slipping Torque Converter Clutch Interface Temperature, Pressure and Torque Measurements Using Inductively Powered Radiotelemetry

1997-02-24
970679
Torque converter clutch friction interface and automatic transmission fluid (ATF) temperatures, pressure difference across the clutch piston, flow through the friction material grooves, and engine crankshaft dynamic torque were measured for typical operating conditions on a running transmission. The friction coefficient, clutch unit pressure, fraction of heat rejected to ATF flowing through the grooves, and time dependent thermal response were determined. Simplified heat transfer calculations were compared with thermal data. Clutch interface temperatures were assessed as they relate to the process of friction material and ATF degradation. The inductively powered radiotelemetry system was found to be a robust and powerful tool for investigating continuously slipping clutch system performance.
Technical Paper

Simultaneous Measurement of the Flame Lift-Off Length on Direct Injection Diesel Sprays Using High Speed Schlieren Imaging and OH Chemiluminescence

2017-10-08
2017-01-2307
Lift-off length is defined as the distance from injector hole to the location where flame stabilized on a high injection pressure direct injection (DI) diesel spray. In this paper we used the high-speed (40 kHz) Schlieren and time-averaged OH chemiluminescence imaging technique to simultaneously measure the flame lift-off locations on a DI diesel spray in an optically accessible and constant-volume combustion vessel. The time-resolved development of the diesel spray acquired from the high-speed Schlieren imaging system enabled us to observe the instantaneous spray structure details of the spray flames. The OH chemiluminescence image obtained from a gated, intensified CCD video camera with different delay and width settings was used to determine the quiescent lift-off length. Experiments were conducted under various ambient temperatures, ambient gas densities, injection pressures and oxygen concentrations.
X