Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Laboratory Study of NOX Reduction During the Rich Operating Period Over a NOX Storage Catalyst

1999-10-25
1999-01-3502
The behaviour of a NOx storage catalyst in powdered form and containing a storage component based on alkaline metal was investigated under rich conditions. Experiments were conducted in a fixed-bed flow reactor with the space velocity set at 45,000 h-1. From these experiments it was possible to extract the fractional NOx reduction and the efficiency of use of the reductant. With 0.9% CO as a reductant at 350°C, complete utilisation of CO was achieved up to 70% NOx conversion as treatment time was increased. To obtain 90% NOx conversion required longer times, and 23% of the CO did not participate in the reduction of NOX. A reductant balance shows that about 40% of the CO added is used to reduce the catalyst surface when the flow is switched from lean to rich. The ranking of efficiencies of different reductant gases at 350°C gave the following sequence: 0.9% H2 ≈ 0.9% CO > 1285 ppm toluene > 3000 ppm propene ≈ 1125 ppm i-octane > 3000 ppm propane.
Technical Paper

Assessing the Importance of Injector Cleanliness in Minimising Particulate Emissions in Gasoline Direct Injection Engines

2022-03-29
2022-01-0490
Injector fouling is an important contributory factor to particulate matter (PM) emissions in Gasoline Direct Injection (GDI) engines. Several publications have emerged in recent years which acknowledge the benefits of injector cleanliness, but others claim that high levels of Deposit Control Additive (DCA) could have detrimental effects that outweigh the benefits of the augmented cleaning potential. The paper is divided into two parts: The first part contains a critical review of the literature linking injector cleanliness and particulate matter emissions, and studies assessing the impact of higher treat rates of additives. The second part of the paper describes new evidence of the beneficial effects of DCAs, in the form of several separate (previously unpublished) studies, using both engines and vehicles. In this newly reported work, various DCA treat rates were employed, and some of the fuels had measured UWG levels well in excess of 50 mg/100 mL.
Technical Paper

Benefits of GTL Fuel in Vehicles Equipped with Diesel Particulate Filters

2009-06-15
2009-01-1934
Synthetic fuels are expected to play an important role for future mobility, because they can be introduced seamlessly alongside conventional fuels without the need for new infrastructure. Thus, understanding the interaction of GTL fuels with modern engines, and aftertreatment systems, is important. The current study investigates potential benefits of GTL fuel in respect of diesel particulate filters (DPF). Experiments were conducted on a Euro 4 TDI engine, comparing the DPF response to two different fuels, normal diesel and GTL fuel. The investigation focused on the accumulation and regeneration behavior of the DPF. Results indicated that GTL fuel reduced particulate formation to such an extent that the regeneration cycle was significantly elongated, by ∼70% compared with conventional diesel. Thus, the engine could operate for this increased time before the DPF reached maximum load and regeneration was needed.
Technical Paper

Combustion Chamber Deposit Flaking

2000-10-16
2000-01-2858
There is increasing concern that small flakes of combustion chamber deposits (CCD) can break lose and get trapped between the exhaust valve and the seat resulting in difficulties in starting, rough running and increase in hydrocarbon emissions. In this paper we describe experimental observations which might explain how this flaking of CCD occurs and the factors that might be important in the phenomenon. The experiments include thirty one engine tests as well as tests done in a laboratory rig and show that some CCD flake when they are exposed to water; indeed water is far more effective in bringing this about than gasoline or other organic solvents. The hydrophilicity of the deposit surface which determines the penetration of water and the inherent susceptibility of the relevant deposit layer to inter-act with water are both important. Consequently there are large differences between deposits produced by different fuels and additives in terms of their susceptibility to flake.
Technical Paper

Combustion Imaging and Analysis in a Gasoline Direct Injection Engine

2004-03-08
2004-01-0045
A single cylinder Direct Injection Spark Ignition (DISI) engine with optical access has been used for combustion studies with both early injection and late injection for stratified charge operation. Cylinder pressure records have been used for combustion analysis that has been synchronised with the imaging. A high speed cine camera has been used for imaging combustion within a cycle, while a CCD camera has been used for imaging at fixed crank angles, so as to obtain information on cycle-by-cycle variations. The CCD images have also been analysed to give information on the quantity of soot present during combustion. Tests have been conducted with a reference unleaded gasoline (ULG), and pure fuel components: iso-octane (a representative alkane), and toluene (a representative aromatic). The results show diffusion-controlled combustion occurring in so-called homogeneous combustion with early injection.
Technical Paper

Combustion and Emissions Performance Analysis of Conventional and Future Fuels using Advanced CAE

2013-10-14
2013-01-2673
In recent years, there has been rapid progress in characterizing the detailed chemical kinetics associated with the oxidation of liquid hydrocarbons and their blends. However adding these fuel models to the industrial engineer's toolkit has proven a major challenge due to issues associated with high CPU cost and the poor suitability of many of the most promising and well known fuel models to IC engine applications. This paper demonstrates the state-of-the-art in the analysis and modelling of current and future transportation fuels or fuel blends for internal combustion engine applications. First-of-all, a benchmarking of eleven representative fuel models (39 to 1034 species in size) is carried out at engine/engine-like operating conditions by adopting the standard Research Octane and Cetane Number test data for comparison. Next, methods to construct a fuel model for a commercial fuel are outlined using a simple, yet robust surrogate mapping technique.
Technical Paper

Comparison of the Effects of Intake-Generated Swirl and Tumble on Turbulence Characteristics in a 4-Valve Engine

1995-10-01
952457
An experimental investigation is carried out on the effect of Swirl and Tumble on turbulence and combustion characteristics in four-valve spark ignition engines. This study is conducted on an optically accessed single cylinder research engine. The in-cylinder motion is varied by means of flow-control baffle located between the intake manifold and the cylinder head. Several baffle sizes and shapes have been designed to induce various in-cylinder flow fields. The equivalent angular speed of the tumble and swirl vortices, occurring inside the cylinder, are determined from Laser Doppler Velocimetry. Comparisons with measurements from a conventional steady flow rig which measures air motion speed with a paddle wheel anemometer are presented and show a good correlation between the two measurement techniques.
Technical Paper

Development of a Direct Injection Spark Ignition Engine Test for Injector Fouling

2003-05-19
2003-01-2006
Direct Injection Spark Ignition (DISI) engines are known to be sensitive to injector fouling. To evaluate the effectiveness of detergent additives and the influence of fuel parameters on injector fouling, a new DISI engine test has been developed, using a 2.0 l stoichiometric homogeneous DI engine on a test bench. Severe engine running conditions have been found to lead to a high amount of deposits on the injector nozzle over a short period of time (“one day” procedure). Injector fouling is measured using a fuel flow measurement procedure representative of injector operating conditions (opening time and pressure). This procedure has proved to be reliable and repeatable with different gasoline fuels and additives being evaluated. The influence of the base fuel and the effect of the composition and the dosages levels of detergent additives (keep-clean and clean-up properties) are demonstrated with the test method.
Technical Paper

Diesel Engine Performance and Emissions when First Generation Meets Next Generation Biodiesel

2009-06-15
2009-01-1935
Limits on the total future potential of biodiesel fuel due to the availability of raw materials mean that ambitious 20% fuel replacement targets will need to be met by the use of both first and next generation biodiesel fuels. The use of higher percentage biodiesel blends requires engine recalibration, as it affects engine performance, combustion patterns and emissions. Previous work has shown that the combustion of 50:50 blends of biodiesel fuels (first generation RME and next generation synthetic fuel) can give diesel fuel-like performance (i.e. in-cylinder pressure, fuel injection and heat release patterns). This means engine recalibration can be avoided, plus a reduction in all the regulated emissions. Using a 30% biodiesel blend (with different first and next generation proportions) mixed with Diesel may be a more realistic future fuel.
Technical Paper

Dilution Interest on Turbocharged SI Engine Combustion

2003-03-03
2003-01-0629
This paper presents a prospective combustion study about dilution effects on turbocharged SI engine at full load. It proposes a comparative analysis between lean burn and cooled exhaust gas recirculation (EGR) operation as knock improvement artifice in substitute of enrichment. The study was led on a four cylinder 2L engine on stationary test bench. A specific EGR circuit was designed in order to achieve high control of the temperature and mass flow of the recirculated gas. Thanks to instantaneous pressure cylinder transducers, a combustion analysis was carried out using an home-made code. 1-D simulations (WAVE code) were used to complete the analysis on volumetric efficiency and turbocharger behaviour. A real advantage of cooled EGR was observed in the study compared to lean burn or enrichment in terms of performance, heat exchange and specific fuel consumption.
Technical Paper

Effect of Diesel Properties on Emissions and Fuel Consumption from Euro 4, 5 and 6 European Passenger Cars

2016-10-17
2016-01-2246
Certain diesel fuel specification properties are considered to be environmental parameters according to the European Fuels Quality Directive (FQD, 2009/EC/30) and previous regulations. These limits included in the EN 590 specification were derived from the European Programme on Emissions, Fuels and Engine Technologies (EPEFE) which was carried out in the 1990’s on diesel vehicles meeting Euro 2 emissions standards. These limits could potentially constrain FAME blending levels higher than 7% v/v. In addition, no significant work has been conducted since to investigate whether relaxing these limits would give rise to performance or emissions debits or fuel consumption benefits in more modern vehicles. The objective of this test programme was to evaluate the impact of specific diesel properties on emissions and fuel consumption in Euro 4, Euro 5 and Euro 6 light-duty diesel vehicle technologies.
Technical Paper

Effects of Fuel Properties Associated with In-Cylinder Behavior on Particulate Number from a Direct Injection Gasoline Engine

2017-03-28
2017-01-1002
The purpose of this work was to gain a fundamental understanding of which fuel property parameters are responsible for particulate emission characteristics, associated with key intermediate behavior in the engine cylinder such as the fuel film and insufficient mixing. Accordingly, engine tests were carried out using various fuels having different volatility and chemical compositions under different coolant temperature conditions. In addition, a fundamental spray and film visualization analysis was also conducted using a constant volume vessel, assuming the engine test conditions. As for the physical effects, the test results showed that a low volatility fuel displayed high particulate number (PN) emissions when the injection timing was advanced. The fundamental test clearly showed that the amount of fuel film on the impingement plate increased under such operating conditions with a low volatility fuel.
Technical Paper

Emissions Response of a European Specification Direct-Injection Gasoline Vehicle to a Fuels Matrix Incorporating Independent Variations in Both Compositional and Distillation Parameters

1999-10-25
1999-01-3663
An emissions programme has been undertaken to gain information on the effect of selected fuel parameters on gasoline direct injection (G-DI) vehicle technology(1) with respect to exhaust emissions. Seven fuel parameters, namely aromatic, methyl-tertiary-butyl ether (MTBE), sulphur and olefin content as well as 3 distillation parameters covering the whole boiling range, were independently investigated. It was found that, overall, the fuel effects on regulated (THC, CO, NOx), particulate (Pm), and CO2 emissions were relatively small.
Technical Paper

Environmental Standards for Biodegradable Hydraulic Fluids and Correlation of Laboratory and Field Performance

2000-09-11
2000-01-2543
Biodegradable hydraulic fluids have been introduced relatively recently and, initially, acceptable environmental performance and technical performance were neither well specified or controlled. Over the past few years, many standards and specifications have been written, especially in the area of biodegradability and ecotoxicity. Technical performance test requirements are emerging more slowly, however, and there is still some doubt over appropriate tests and limits for some performance areas. The proliferation of standards is confusing to both the product developer and fluid user. This paper summarizes the common biodegradability and ecotoxicity elements in the main environmental performance standards. It also discusses appropriate laboratory performance tests for oxidation stability, hydrolytic stability and wear, and sets acceptable limits in these tests, based on correlation of lab and field performance of two synthetic ester based hydraulic fluids.
Technical Paper

Exhaust gas fuel reforming for IC Engines using diesel type fuels

2007-07-23
2007-01-2044
Control of NOx and Particulate Matter (PM) emissions from diesel engines remains a significant challenge. One approach to reduce both emissions simultaneously without fuel economy penalty is the reformed exhaust gas recirculation (REGR) technique, where part of the fuel is catalytically reacted with hot engine exhaust gas to produce a hydrogen-rich combustible gas that is then fed to the engine. On the contrary to fuel cell technology where the reforming requirements are to produce a reformate with maximized H2 concentration and minimized (virtually zero) CO concentration, the key requirement of the application of the exhaust gas fuel reforming technique in engines is the efficient on-demand generation of a reformate with only a relatively low concentration of hydrogen (typically up to 20%).
Technical Paper

Impact of Diesel Fuel Composition on Soot Oxidation Characteristics

2009-04-20
2009-01-0286
The regeneration of a Diesel Particulate Filter (DPF) is dependent on both the amount and type of soot present on the filter. The objective of this work is to understand how the fuel can affect this ease with which soot can be oxidized. This soot was produced in a two-cylinder four-stroke direct-injection diesel engine, operated with a matrix of fuels with varying aromatic and sulphur level. Their oxidation behaviour in different environments was determined by Temperature Programmed Oxidation in TGA and a six-flow reactor. Transmission electron microscopy was used to examine the soot morphology. Oxidation with only O2 shows oxidation temperatures strongly dependent on the fuel type. Soot oxidation in the presence of NO and a Pt-catalyst results in a lower oxidation temperature. SO2 has an inhibiting effect leading to higher soot oxidation temperature.
Journal Article

Impact of Fuel Sensitivity (RON-MON) on Engine Efficiency

2017-03-28
2017-01-0799
Modern spark ignition engines can take advantage of better fuel octane quality either towards improving acceleration performance or fuel economy via an active ignition management system. Higher fuel octane allows for spark timing advance and consequently higher torque output and higher engine efficiency. Additionally, engines can be designed with higher compression ratios if a higher anti-knock quality fuel is used. Due to historical reasons, Research Octane (RON) and Motor Octane Number (MON) are the metrics used to characterize the anti-knock quality of a fuel. The test conditions used to compute RON and MON correlated well with those in older engines designed about 20 years ago. But the correlation has drifted considerably in the recent past due to advances in engine infrastructures mainly governed by stringent fuel economy and emission standards.
Journal Article

Injector Fouling and Its Impact on Engine Emissions and Spray Characteristics in Gasoline Direct Injection Engines

2017-03-28
2017-01-0808
In Gasoline Direct Injection engines, direct exposure of the injector to the flame can cause combustion products to accumulate on the nozzle, which can result in increased particulate emissions. This research observes the impact of injector fouling on particulate emissions and the associated injector spray pattern and shows how both can be reversed by utilising fuel detergency. For this purpose multi-hole injectors were deliberately fouled in a four-cylinder test engine with two different base fuels. During a four hour injector fouling cycle particulate numbers (PN) increased by up to two orders of magnitude. The drift could be reversed by switching to a fuel blend that contained a detergent additive. In addition, it was possible to completely avoid any PN increase, when the detergent containing fuel was used from the beginning of the test. Microscopy showed that increased injector fouling coincided with increased particulate emissions.
Technical Paper

Octane Requirement and Efficiency in a Fleet of Modern Vehicles

2017-03-28
2017-01-0810
In light of increasingly stringent CO2 emission targets, Original Equipment Manufacturers (OEM) have been driven to develop engines which deliver improved combustion efficiency and reduce energy losses. In spark ignition engines one strategy which can be used to reach this goal is the full utilization of fuel octane number. Octane number is the fuel´s knock resistance and is characterized as research octane number (RON) and motor octane number (MON). Engine knock is caused by the undesired self-ignition of the fuel air mixture ahead of the flame front initiated by the spark. It leads to pressure fluctuations that can severely damage the engine. Modern vehicles utilize different strategies to avoid knock. One extreme strategy assumes a weak fuel quality and, to protect the engine, retards the spark timing at the expense of combustion efficiency. The other extreme carefully detects knock in every engine cycle and retards the spark timing only when knock is detected.
Technical Paper

Octane Response of a Highly Boosted Direct Injection Spark Ignition Engine at Different Compression Ratios

2018-04-03
2018-01-0269
Stringent regulations on fuel economy have driven major innovative changes in the internal combustion engine design. (E.g. CAFE fuel economy standards of 54.5 mpg by 2025 in the U.S) Vehicle manufacturers have implemented engine infrastructure changes such as downsizing, direct injection, higher compression ratios and turbo-charging/super-charging to achieve higher engine efficiencies. Fuel properties therefore, have to align with these engine changes in order to fully exploit the possible benefits. Fuel octane number is a key metric that enables high fuel efficiency in an engine. Greater resistance to auto-ignition (knock) of the fuel/air mixture allows engines to be operated at a higher compression ratio for a given quantity of intake charge without severely retarding the spark timing resulting in a greater torque per mass of fuel burnt. This attribute makes a high octane fuel a favorable hydrocarbon choice for modern high efficiency engines that aim for higher fuel economy.
X