Refine Your Search

Topic

Search Results

Technical Paper

Topological Optimization Design of Cooling Channel for Liquid-Cooled Plate of Power Battery

2024-04-09
2024-01-2676
The influence of the channels of a liquid-cooled plate on the heat dissipation performance of battery module is investigated in this paper. A topology optimization method for obtaining channel configurations of the liquid cooled plate is presented. Firstly, the battery pack cooling system test platform is built to test the flow resistance of the liquid-cooled plate under different flow rates and the maximum temperature and temperature difference of the battery under different working conditions. Secondly, the geometric model of the battery pack is established, and CFD software is used to simulate according to the test conditions. The test results validate the correctness of the model. Then, taking the average surface temperature of the liquid-cooled plate as the optimization objective, the topology optimization structure of the liquid-cooled plate is obtained by variable density method.
Technical Paper

The Breaking Torsion Test and Quasi-Static Finite Element Simulations of the Rzeppa Type Constant Velocity Joint under a Large Joint Angle

2021-04-06
2021-01-0706
The breaking torque is an essential property that identifies the strength of driveshafts under high torque loads. In the breaking torsion test, the constant velocity joint of the driveshafts is usually loaded slowly at a very slow rotating speed under a specific joint angle until it breaks. Under different joint angles, the Rzeppa type constant velocity joint, namely ball joints (BJ), will break at different positions and with different torques. Common results of fracture position include the shaft of the outer race, the shell of the outer race, and the cage column. Simultaneously, the plastic deformation caused by compressive stress occurs at the specific position of the ball track and the cage. In order to analyze the failure reason of the ball joint under a larger joint angle, the quasi-static finite element simulations and test methods are used to analyze the damage caused by stress distribution based on material properties.
Technical Paper

The Analytical Method for Calculating the Hysteretic Behavior of an Asymmetry Tensioner

2021-04-06
2021-01-0655
An automatic tensioner with an asymmetric damping structure used in an engine front end accessory drive system is analyzed. An analytical model is established to calculate the hysteretic behavior of the tensioner. The contact characteristics of contact pairs are modeled and investigated for disclosing relation between contact pair, friction and hysteretic loop of an automatic belt tensioner. The presented models are validated by a torque measurement versus angular displacement of a tensioning arm. The errors between the calculation and the measurement are analyzed. The working torques of the tensioner during loading and unloading process are described by a bilinear hysteretic model and are written as a function with a damping ratio. The influence of damping structure parameters on the hysteretic torque is investigated. The method presented in this paper can be used for predicting the nonlinear characteristics of a tensioner before prototyping.
Technical Paper

Study on Steering Angle Input during the Automated Lane Change of Electric Vehicle

2017-09-23
2017-01-1962
The trajectory planning and the accurate path tracking are the two key technologies to realize the intelligent driving. The research of the steering wheel angle plays an important role in the path tracking. The purpose of this study is to optimize the steering wheel angle input during the automated lane changing. A dynamic programming approach to trajectory planning is proposed in this study, which is expected to not only achieve a quick reaction to the changing driving environment, but also optimize the balance between vehicle performance and driving efficiency. First of all, the lane changing trajectory is planned based on the positive and negative trapezoidal lateral acceleration method. In addition, the multi-objective optimization function is built which includes such indexes: lateral acceleration, lateral acceleration rate, yaw rate, lane changing time and lane changing distance.
Technical Paper

Study on Arrangement of TIG Weld Seams of 6061-T6 Aluminum Alloy

2023-04-11
2023-01-0939
Welding deformation of aluminum alloy is an urgent problem to be solved, it affects the performance and service life of welding products. In this research, in order to compute welding deformation and residual stress, a finite element model of 6061-T6 aluminum alloy was established. The efficiency and the accuracy of the welding residual stress calculation and the welding deformation were significantly improved. By comparing the temperature field and the displacement field of simulation and experiment, the finite element model was validated. Through finite element analysis, Heat input and welding times have important effects on welding deformation and residual stress was found. The welding deformation law and the residual stress distribution law were proposed, after cooling of the welding seams, the plates collapsed to the other side of the heat source along the vertical direction, the welding deformation tendency was heightened by double-sided welding.
Technical Paper

Structural Vibration Analysis and Sound Quality Improvement for a Four-Cylinder Engine

2023-05-08
2023-01-1153
An Inline 4-cylinder engine is equipped with second-order balance shafts.When the engine is running under full load in 5000rpm,the engine generated severe structural radiation noise.The bench test analysis shows that the main reason is the resonance of the engine near 800Hz and 1500Hz. In this paper, a method for modeling and analyzing the vibration of the engine structure is proposed, and the sound quality of the engine is evaluated and imporved by the Moore–Glasberg loudness method. Firstly, the finite element model of the engine was established, and the experimental modes of the engine casing assembly, crankshaft and balance shaft were measured. The natural frequencies and modal shapes obtained by calculation and experiment were compared, which validates the established finite element model.Secondly, a flexible multi-body dynamic model of the engine was established.
Technical Paper

Structural Optimization for Engine Mount Bracket

2007-05-15
2007-01-2419
Design of powertrain mounting bracket is always challenging in achieving good NVH characteristics, sound durability and simultaneously reduced weight. Structural optimization is an effective tool to obtain an optimum design. Depending on the design status, different schemes, i.e. size, topology and shape optimization, are applied. In this paper, a case study of application of structural optimization in the design of a mount bracket has been presented. Firstly, both test and FEA (Finite Element Analysis) results expose problems of the initial design. Therefore, it is necessary to redesign the bracket. With sufficient design freedom and time in topology optimization, design space and optimization parameters are defined. Die direction and other manufacturability considerations for the casting components are vital. Shape optimization is then conducted to further decrease the weight and refine local weakness.
Technical Paper

Structural Design and Optimization of Liquid-Cooled Thermal Management Components for Electric Vehicle Batteries

2023-04-11
2023-01-0768
Electric vehicle battery thermal management based on liquid cooling is the mainstream form of cooling for new energy vehicles. According to energy consumption, the system is divided into active cooling system and passive cooling system. The cooling of battery modules in these two cooling systems is carried out by liquid-cooled plate, which is connected in series in the cooling system. Therefore, the design of the liquid-cooled plate has a great impact on the effect of battery heat dissipation. In this paper, considering the advantages of existing liquid-cooled plates, the author proposed a series-parallel hybrid dc channel liquid-cooled plate structure, taking square lithium iron phosphate battery pack as the research object. Finally, the effects of different inlet flows and temperatures of the liquid-cooled plate on the thermal performance of the liquid-cooled plate were investigated by using single factor analysis.
Technical Paper

Sound Transmission Loss of Acoustic Metamaterial with Lightweight Frame and Hard Membrane-Like Material

2023-05-08
2023-01-1057
To reduce the noise in the frequency range of 100Hz~1000Hz, a metamaterial structure composed of lightweight frame, hard membrane-like material and added mass is proposed in this paper. The advantage of this structure is that it is lightweight and the membrane-like material does not need to be stressed in advance. Finite element method (FEM) and experiment are used to investigate the sound transmission loss (STL) performance of the metamaterial structure. The results show that the peak STL is caused by the local resonance of the added mass and the membrane-like material. The valley versus frequency results from the resonance frequencies of metamaterial structure, and it is divided into three resonance frequencies: resonance frequencies from added mass, membrane-like material and frame.
Technical Paper

Simulation and Optimization Method of High Frequency Dynamic Characteristics of Rubber Mount

2021-04-06
2021-01-0663
A non-linear viscoelastic constitutive model composed of Mooney-Rivlin model and multiple Maxwell models is used to calculate the high frequency dynamic characteristics of rubber mounts. The equivalent mechanical model of the rubber vibration mount is established and the difference between the drive-point dynamic stiffness and the cross-point dynamic stiffness is analyzed. The analysis shows that the use of the cross-point dynamic characteristic test method can eliminate the influence of the additional inertial force in the test, which is suitable for rubber mounts’ high-frequency dynamic characteristics test; at the same time, a finite element model of the rubber mount is built to analyze its cross- point dynamic stiffness and drive-point dynamic stiffness. The analysis results are compared with the experimental results which verifies the finite element model and the correctness of the mechanical model.
Technical Paper

Research on Sound Insulation Characteristics and Application of Acoustic Metamaterials

2022-03-29
2022-01-0343
In the field of low-frequency noise control, the acoustic metamaterials have received extensive attention from researchers. However, the existing work mainly focuses on small structures with fixed boundaries, which is quite different from engineering applications. Based on the membrane-type acoustic metamaterials, this paper uses a rigid thin plate to replace the tensioned membrane, design and manufacture of two new types of local resonance structure and studies their sound insulation properties. First, the metamaterial samples with a small size of 100mm in diameter and a large-size square with a side length of 506mm were produced, and the sound TL of the two was tested through the impedance tube and the reverberation chamber-anechoic chamber, respectively. The results show that the new structure can form an obvious sound insulation frequency band at low frequencies. Based on the finite element method, a metamaterial acoustic transmission loss calculation model is established.
Technical Paper

Research on Mid-Low Frequency Noise Reduction Material and Its Structure Design

2021-04-06
2021-01-0815
Aiming at the problem of middle and low frequency noise absorption, a combined sound-absorbing structure is designed based on porous material and a coiled-up cavity resonance structure. Combined with the sound absorption principle of porous materials and coiled-up cavities, a theoretical analytical model was established. By the finite element method, the sound absorption coefficient curve of the combined structure in a frequency range of 500-2000Hz is calculated, and the correctness of the analytical calculation and the finite element simulation calculation was verified in the impedance tube experiment. The results show that the combined structure has good sound absorption performance in the 500Hz-2000Hz frequency band, and the sound absorption peak appears near the 1108Hz frequency, reaching nearly perfect sound absorption. Compared with a single porous material, the sound absorption performance of the combined structure is better.
Technical Paper

Research on Fractal Friction Model between Balls and Arc Raceways inside a Ball Joint

2020-04-14
2020-01-1093
During the operation of the ball joint, its service life and transmission efficiency are affected by the internal friction. Taking the ball joint as the research object, based on fractal theory, the friction between the steel ball and the raceway inside the ball joint of an automotive drive shaft system is studied in this paper. During the analysis, the friction between the steel ball and the arc raceway is regarded as the friction between a sphere and an arc raceway surface. In order to describe the friction state more accurately, this paper proposes a correction coefficient to modify the distribution function of contact asperities in the plane, and obtains the distribution function of contact asperities between the sphere and the arc raceway surface. The correction coefficient is related to the load, the size parameters and the material parameters of the steel ball and the raceway.
Technical Paper

Research and Parameter Optimization on Ride Comfort and Road Friendliness of Interconnected Air Suspension for Commercial Vehicles

2021-04-06
2021-01-0316
In order to improve the ride comfort and road friendliness of heavy commercial vehicles, a lateral interconnected air suspension system is developed. Based on the theory of thermodynamics and vehicle dynamics, a Ten-degree-of-freedom vehicle dynamics model with lateral interconnected air suspension is established. Interconnected pipeline parameters’ influence on characteristics of air suspension system in whole vehicle are calculated and analyzed. Simulation results show that the stiffness of air suspension decreases gradually with the increase of interconnected pipeline diameter. The designed interconnected air spring experiments verify the simulation results. Simulation on vehicle dynamics models is carried out by building random road models with different roughness levels in MATLAB.
Technical Paper

Reinforcement Learning in Optimizing the Electric Vehicle Battery System Coupling with Driving Behaviors

2024-04-09
2024-01-2006
Battery Run-down under the Electric Vehicle Operation (BREVO) model is a model that links the driver’s travel pattern to physics-based battery degradation and powertrain energy consumption models. The model simulates the impacts of charging behavior, charging rate, driving patterns, and multiple energy management modules on battery capacity degradation. This study implements reinforcement learning (RL) to the simplified BREVO model to optimize drivers’ decisions on charging such as charging rate, charging time, and charging capacity needed. This is done by a reward function that considers both the driver’s daily travel demands and the minimization of battery degradation over a year. It shows that using appropriate charger type (No Charge, Level 1, Level 2, direct-current Fast Charge [DCFC], extreme Fast Charging [xFC]) with an appropriate charging time can reduce battery degradation and total charging cost at the end of the year while satisfying driver’s daily travel demand.
Technical Paper

Prediction of Amplitude-Sensitive Dynamic Characteristics of Hydraulic Engine Mount and Experimental Verification

2021-04-06
2021-01-0657
The amplitude-sensitive nonlinear mathematical model of the hydraulic engine mount (HEM) with a free-floating decoupler is deduced through the theory of fluid dynamics. The model considers the amplitude-sensitive characteristics, such as local pressure loss of the inertial track and the decoupler, the amplitude-sensitive dynamic stiffness of main rubber, and the switch mechanism of the decoupler. A new model of decoupler’s switching mechanism is established, which makes parameter identification simpler comparing to the existing analogous models. The finite element method is used to identify parameters of the lumped-parameter model, such as the contact force between the decoupler plate and the cage, the stiffness of the main rubber, the equivalent piston area, the chambers’ compliances, etc. The lumped parameters of fluid track are obtained by fluid mechanics formula.
Technical Paper

Parameter Identification of Constitute Model of Glass Fiber Reinforced Polypropylene under Adiabatic Temperature Rise Loads

2024-04-09
2024-01-2355
To characterize the stress flow behavior of engineering plastic glass fiber reinforced polypropylene (PPGF) commonly used in automotive interior and exterior components, mechanical property is measured using a universal material testing machine and a servo-hydraulic tensile testing machine under quasi-static, high temperature, and high strain rate conditions. Stress versus strain curves of materials under different conditions are obtained. Based on the measured results, a new parameter identification method of the Johnson-Cook (J-C) constitutive model is proposed by considering the adiabatic temperature rise effect. Firstly, a material-level experiment method is carried out for glass fiber reinforced polypropylene (PPGF) materials, and the influence of wide strain rate range, and large temperature span on the material properties is studied from a macroscopic perspective.
Technical Paper

Numerical Investigation on Heat Dissipation Performance of Multi-Fan Cooling Module

2024-04-09
2024-01-2587
To study the heat dissipation performance of the multi-fan cooling module composed of multiple fans and a radiator, numerical models of the radiator and the multi-fan cooling module were established, and heat dissipation performance prediction analysis and application analysis were conducted. In modeling, the Effectiveness-Number of Transfer Units (ε − NTU) method is used to predict the heat dissipation performance of the radiator. The aerodynamic performance of the fan at any speed is obtained by the similarity theorem using the data obtained from the tests at a certain speed. The influence between the fan and the radiator was established by using the flow addition scheme. To validate the established model, heat dissipation performance using 36 radiators and 11 multi-fan cooling modules is measured, and the measured data are compared with the calculations.
Technical Paper

Numerical Investigation of the Static Characteristics of Solenoid Valve in Decoupled Brake-by-Wire System

2021-04-06
2021-01-0804
The static characteristics of solenoid valve play an important role in the performance of brake system and can indirectly reflect the response speed of the brake system. The static characteristics of the solenoid valve reflect the electromagnetic characteristics of the solenoid valve itself, revealing the maximum potential of the solenoid valve in the system work, which is one of the important characteristics to characterize the working ability of the solenoid valve. In this paper, a numerical calculation method is used to build a finite element model of the solenoid valve electromagnetic field on the Ansoft Maxwell simulation platform. The model takes into account the nonlinear magnetization characteristics of soft magnetic materials and the air gap.
Technical Paper

Modelling of High-Frequency Dynamic Stiffness of Double-Isolation Rubber Isolators

2021-04-06
2021-01-0654
For traditional rubber isolators, the dynamic stiffness increases significantly with the increase of excitation frequency and will have a peak value, which is called "internal resonance" phenomenon. This paper investigates a double-isolation rubber isolator, which consist of two rubber bushings and additional mass. It can be applied to improve the NVH (Noise, Vibration and Harshness) performance at high frequency of electric vehicles. The equivalent mechanical model and mathematical model of the double-isolation rubber isolator are established. Then, the finite element analysis (FEA) model is established, and we calculate the drive point dynamic stiffness and cross point dynamic stiffness of the inner bushing, outer bushing and the entire double-isolation rubber isolator.
X