Refine Your Search

Topic

Author

Search Results

Technical Paper

Using ALPHA v3.0 to Simulate Conventional and Electrified GHG Reduction Technologies in the MY2022 Light-Duty Fleet

2024-04-09
2024-01-2710
As GHG and fuel economy regulations of light-duty vehicles have become more stringent, advanced emissions reduction technology has extensively penetrated the US light-duty vehicle fleet. This new technology includes not only advanced conventional engines and transmissions, but also greater adoption of electrified powertrains. In 2022, electrified vehicles – including mild hybrids, strong hybrids, plug-ins, and battery electric vehicles – made up nearly 17% of the US fleet and are on track to further increase their proportion in subsequent years. The Environmental Protection Agency (EPA) has previously used its Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) full vehicle simulation tool to evaluate the greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA contains a library of benchmarked powertrain components that can be matched to specific vehicles to explore GHG emissions performance.
Journal Article

Use of Nitric Acid to Control the NO2:NOX Ratio within the Exhaust Composition Transient Operation Laboratory Exhaust Stream

2020-04-14
2020-01-0371
The Exhaust Composition Transient Operation LaboratoryTM (ECTO-LabTM) is a burner system developed at Southwest Research Institute (SwRI) for simulation of IC engine exhaust. The current system design requires metering and combustion of nitromethane in conjunction with the primary fuel source as the means of NOX generation. While this method affords highly tunable NOX concentrations even over transient cycles, no method is currently in place for dictating the speciation of nitric oxide (NO) and nitrogen dioxide (NO2) that constitute the NOX mixture. NOX generated through combustion of nitromethane is dominated by NO, and generally results in an NO2:NOX ratio of < 5 %. Generation of any appreciable quantities of NO2 is therefore dependent on an oxidation catalyst to oxidize a fraction of the NO to NO2.
Technical Paper

Unrestrained, Front Seat, Child Surrogate Trajectories Produced by Hard Braking

1982-02-01
821165
This paper describes a study to determine the influence of preimpact vehicle braking on the positions and postures of unrestrained, children in the front seat at the time of collision. Anesthetized baboons were used as child surrogates. The unrestrained animals were placed in various initial sitting, kneeling, and standing positions typically assumed by children while traveling in automobiles. Tests were conducted with various front seat positions and seat covering materials. Measurements were made of pertinent vehicle dynamics and surrogate kinematics during the hard braking event. For each initial condition evaluated, a photosequence is given showing typical positions and postures of the surrogate during the braking event.
Journal Article

Transmission Output Chain Spin Loss Study

2017-03-28
2017-01-1135
Transmission spin loss has significant influence on the vehicle fuel economy. Transmission output chain may contribute up to 10~15% of the total spin loss. However, the chain spin loss information is not well documented. An experimental study was carried out with several transmission output chains and simulated transmission environment in a testing box. The studies build the bases for the chain spin loss modeling and depicted the influences of the speed, the sprocket sizes, the oil levels, the viscosity, the temperatures and the baffle. The kriging method was employed for the parameter sensitivity study. A closed form of empirical model was developed. Good correlation was achieved.
Technical Paper

The Turbo Trac Traction Drive CVT

2004-08-23
2004-40-0038
A unique and attractive variator mechanism has been developed by Turbo Trac, Inc. and Southwest Research Institute (SwRI) for initial use in a heavy duty diesel truck application. High efficiency levels have been predicted with analytical models and confirmed with actual test data. Further, this variator incorporates a very stable and simple control system and has extremely high torque capacity. The prototype of the variator mechanism has also been configured with a modified Allison 650 series transmission for use as a series application in a Peterbilt truck, the final configuration will be a split power design. The setup includes a preliminary control system that allows for highway driving. It is emphasized, however, that Allison did not contribute to this design or any of the content of this paper.
Technical Paper

The Effect of Sparkplug Design on Initial Flame Kernel Development and Sparkplug Performance

2006-04-03
2006-01-0224
Tests were conducted on a variety of commercially available spark plugs to determine the influence of igniter design on initial kernel formation and overall performance. Flame kernel formation was investigated using high-speed schlieren visualization. The flame growth rate was quantified using the area of the burned gas region. The results showed that kernel growth rate was heavily influenced by electrode geometry and configuration. The igniters were also tested in a bomb calorimeter to determine the levels of supplied and delivered energy. The typical ratio of supplied to delivered energy was 20% and igniters with a higher internal resistance delivered more energy and had faster kernel formation rates. The exception was plugs with large amounts of conductive mass near the electrodes, which had very slow kernel formation rates despite relatively high delivered energy levels.
Technical Paper

The ASTM Test Monitoring Center - Evolving in a Changing Industry

2000-10-16
2000-01-2946
This paper traces the evolution of the ASTM Test Monitoring Center (TMC) from its modest beginnings in 1976 to the present. Formed as an unbiased and non-aligned group within ASTM Subcommittee D02.B, the TMC operates a reference oil based calibration system that serves both the producers and users of automotive lubricants. Governed by the ASTM Test Monitoring Board, the center's primary mission is to calibrate engine dynamometer test stands used to conduct various ASTM test methods for evaluating lubricant performance. The core services of the TMC have remained the same over its nearly 25 year history. The center stores and distributes ASTM reference oils and is responsible for assuring, through the use of analytical testing, the quality and consistency of the oils. The number of reference oils handled by the TMC has steadily increased over time such that today the center inventories some 100 different formulations having a total volume of 65,000 gallons.
Technical Paper

The 1989 Formula SAE Student Design Competition

1990-02-01
900840
Forty-five cars were entered from 37 universities across the U.S. and Canada in the ninth annual Formula SAE Student Design Competition held on May 25, 26 and 27 at the University of Texas at San Antonio (UTSA). Thirty-six cars from 31 schools actually competed, but only 22 cars finished. The event included many firsts in Formula SAE. The SAE South Texas Section set a precedent by co-hosting the competition with the UTSA. The GM Sunraycer display and demonstration exhibited high technology and corporate support of Formula SAE. Total award funds (from various sponsors) exceeded those of previous events. New awards were given by new sponsors in 1989.
Technical Paper

Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles

2019-04-02
2019-01-0116
A new generation of vehicle dynamics and powertrain control technologies are being developed to leverage information streams enabled via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) connectivity [1, 2, 3, 4, 5]. While algorithms that use these connected information streams to enable improvements in energy efficiency are being studied in detail, methodologies to quantify and analyze these improvements on a vehicle have not yet been explored fully. A procedure to test and accurately measure energy-consumption benefits of a connected and automated vehicle (CAV) is presented. The first part of the test methodology enables testing in a controlled environment. A traffic simulator is built to model traffic flow in Fort Worth, Texas with sufficient accuracy. The benefits of a traffic simulator are two-fold: (1) generation of repeatable traffic scenarios and (2) evaluation of the robustness of control algorithms by introducing disturbances.
Technical Paper

Scuderi Split Cycle Engine: Air Hybrid Vehicle Powertrain Simulation Study

2012-04-16
2012-01-1013
The Scuderi engine is a split cycle design that divides the four strokes of a conventional combustion cycle over two paired cylinders, one intake/compression cylinder and one power/exhaust cylinder, connected by a crossover port. This configuration provides potential benefits to the combustion process, as well as presenting some challenges; it also creates the possibility for pneumatic hybridization of the engine. This paper presents the methodology and results of a comprehensive study to investigate the benefits of air hybrid operation with the Scuderi Split Cycle (SSC) engine. Four air hybrid operating modes are made possible by the Split Cycle configuration, namely air compressor, air expander, air expander & firing and firing & charging. The predicted operating requirements for each individual operating mode are established. The air and fuel flow of the individual modes are fully mapped throughout the engine operating speed and load range and air tank pressure operating range.
Technical Paper

Quantitative Estimate of the Relation Between Rolling Resistance on Fuel Consumption of Class 8 Tractor Trailers Using Both New and Retreaded Tires

2014-09-30
2014-01-2425
Road tests of class 8 tractor trailers were conducted by the US Environmental Protection Agency (EPA) on a new and retreaded tires of varying rolling resistance in order to provide estimates of the quantitative relation between rolling resistance and fuel consumption. Reductions in fuel consumption were measured using the SAE J1231 (reaffirmation of 1986) test method. Vehicle rolling resistance was calculated as a load-weighted average of the rolling resistance (as measured by ISO28580) of the tires in each axle position. Both new and retreaded tires were tested in different combinations to obtain a range of vehicle coefficient of rolling resistance from a baseline of 7.7 kg/ton to 5.3 kg/ton. Reductions in fuel consumption displayed a strong linear relationship with coefficient of rolling resistance, with a maximum reduction of fuel consumption of 10 percent relative to the baseline.
Technical Paper

Proposed Efficiency Rating for an Optimized Automatic Transmission

1996-02-01
960425
Increased concern for improving fuel mileage in today's vehicles has focused attention on powertrain component efficiencies. Currently, no efficiency standards exist for automatic transmissions but, uniform testing procedures do exist. Consequently, vehicle and transmission manufacturers have no basis for comparing transmission-to-transmission performance. In addition, manufacturers have no design targets from which to critique their product. This paper addresses this issue by developing an overall transmission efficiency rating. This rating is based upon average transmission operational torques and speeds, the percent time of operation in each gear for a representative duty cycle, and representative efficiencies at these conditions based on test data obtained from a cross section of current production transmissions.
Technical Paper

Preparation and Testing of an Electric Competition Vehicle

1991-08-01
911684
A Dodge Omni electric car was prepared for competition in an electric “stock car” 2-hour endurance event: the inaugural Solar and Electric 500 Race, April 7, 1991. This entry utilized a series-wound, direct-current 21-hp electric motor controlled by an SCR frequency and pulse width modulator. Two types of lead-acid batteries were evaluated and the final configuration was a set of 16 (6-volt each) deep-cycle units. Preparation involved weight and friction reduction; suspension modification; load, charge and temperature instrumentaltion; and electrical interlock and collision safety systems. Vehicle testing totalled 15 hours of operation. Ranges observed in testing with the final configuration were from 30 to 52 miles for loads of 175 to 90 amperes. These were nearly constant, continuous discharge cycles. The track qualifying speed (64mph) was near the 68 mph record set by the DEMI Honda at the event on the one-mile track.
Technical Paper

Piston-Turbine-Compound Engine — A Design and Performance Analysis

1965-02-01
650632
Exhaust heat utilization for internal combustion engines has centered around turbosupercharging in recent years, neglecting the promising field of compounding a piston engine with a gas turbine in which, unlike turbocharging, turbine power is fed back to the engine crankshaft. The piston engine can cope with high gas pressure and temperature, whereas the gas turbine can efficiently utilize the energy at relatively low pressure and temperature and large volume flows. By compounding, this-piston engine will handle the high pressure, high temperature phase of the combustion cycle and extend the expansion ratio of the gases to atmospheric pressure by completing the low pressure, low temperature phase in the gas turbine. The marriage of the two engines will result in an outstanding power package with the highest thermal efficiency possible.
Technical Paper

Optimum Control of a Hydrostatic Powertrain in the Presence of Accessory Loads

2002-03-19
2002-01-1417
In off-highway applications the engine torque is distributed between the transmission (propulsion) and other accessories such as power steering, air conditioning and implements. Electronic controls offer the opportunity to more efficiently manage the control of the engine and transmission as an integrated system. This paper deals with development of a steepest descent algorithm for maximizing the efficiency of hydrostatic transmission along with the engine in the presence of accessory load. The methodology is illustrated with an example. The strategy can be extended to the full hydro-mechanical configuration as required. Applications of this approach include adjusting for component wear and intelligent energy management between different accessories for possible size reduction of powertrain components. The potential benefits of this strategy are improved fuel efficiency and operator productivity.
Technical Paper

Numerical Simulations of SAE #2 Machine Tests

1999-10-25
1999-01-3617
For many years the SAE No. 2 friction machine has been used to measure the coefficient of friction obtained through the interaction of fluid, steel and clutch material. In addition, by forcing energy through the wetted clutch-steel interface and measuring the decay of the coefficient of friction over time, the durability of the materials and fluids can be determined. This paper discusses the use of a numerical computer model to duplicate SAE No. 2 data. The inputs for this model include test stand geometry and physical properties as well as output from a low velocity friction apparatus (LVFA). The LVFA uses a small disc of friction material, a small disc of steel material, and a small sample of fluid to generate a coefficient versus speed curve (m vs v). It was found that torque traces and speed traces generated by this model correlate well with actual SAE No. 2 data. THERE ARE SEVERAL REASONS for creating this model.
Technical Paper

Noise Reduction Techniques as They Apply to Engine-Generator Design and Treatment

1969-02-01
690755
Small engines may require soundproofing to eliminate one or more of the following effects: hearing loss, speech interference, community annoyance, detectability, and psychological disorientation. Detectability criteria are frequently associated with military applications and may require the use of a soundproof enclosure in addition to other engine treatments. Acoustical noise sources are conveniently classed as either aerodynamic or mechanical. Aerodynamic sources are predominant on small engines. Treatment of exhaust noise by individual components, e.g., muffler, is inadequate; a system approach, through the use of an electro-acoustic analog computer, has proved to be a much more satisfactory procedure.
Journal Article

Multi-Vehicle Evaluation of Gasoline Additive Packages: A Fourth Generation Protocol for the Assessment of Intake System Deposit Removal

2009-11-02
2009-01-2635
Building on two decades of expertise, a fourth generation fleet test protocol is presented for assessing the response of engine performance to gasoline additive treatment. In this case, the ability of additives to remove pre-existing deposit from the intake systems of port fuel injected vehicles has been examined. The protocol is capable of identifying real benefits under realistic market conditions, isolating fuel performance from other effects thereby allowing a direct comparison between different fuels. It is cost efficient and robust to unplanned incidents. The new protocol has been applied to the development of a candidate fuel additive package for the North American market. A vehicle fleet of 5 quadruplets (5 sets of 4 matched vehicles, each set of a different model) was tested twice, assessing the intake valve clean-up performance of 3 test fuels relative to a control fuel.
Technical Paper

Motorcycle Toroidal CVT Design Concepts

2003-03-03
2003-01-0972
Although the toroidal continuously variable transmission (CVT) has been successfully introduced into the automotive market, it has not been developed for the motorcycle community even though manufacturers have shown interest. Further, little information is available with regards to their application in motorcycles. To aid in the development process, continuously variable toroidal transmission design concepts for a motorcycle application are presented. Alternate packaging configurations developed in this paper represent potential future motorcycle transmission arrangements. Variator design parameters and their effect on transmission operation are discussed. Both single and dual cavity designs as well as orientation of the engine and final drive are reviewed.
Technical Paper

Modeling, Simulation, and Hardware-in-the-Loop Transmission Test System Software Development

2003-03-03
2003-01-0673
This paper describes the development of a generic test cell software designed to overcome many vehicle-component testing difficulties by introducing modern, real-time control and simulation capabilities directly to laboratory test environments. Successfully demonstrated in a transmission test cell system, this software eliminated the need for internal combustion engines (ICE) and test-track vehicles. It incorporated the control of an advanced AC induction motor that electrically simulated the ICE and a DC dynamometer that electrically replicated vehicle loads. Engine behaviors controlled by the software included not only the average crankshaft torque production but also engine inertia and firing pulses, particularly during shifts. Vehicle loads included rolling resistance, aerodynamic drag, grade, and more importantly, vehicle inertia corresponding to sport utility, light truck, or passenger cars.
X