Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1D Modeling of Alternative Fuels Spray in a Compression Ignition Engine Using Injection Rate Shaping Strategy

2019-09-09
2019-24-0132
The Injection Rate Shaping consists in a novel injection strategy to control air-fuel mixing quality via a suitable variation of injection timing that affects the injection rate profile. This strategy has already provided to be useful to increase combustion efficiency and reduce pollutant emissions in the modern compression ignition engines fed with fossil Diesel fuel. But nowadays, the ever more rigorous emission targets are enhancing a search for alternative fuels and/or new blends to replace conventional ones, leading, in turn, a change in the air-fuel mixture formation. In this work, a 1D model of spray injection aims to investigate the combined effects of both Injection Rate Shaping and alternative fuels on the air-fuel mixture formation in a compression ignition engine. In a first step, a ready-made model for conventional injection strategies has been set up for the Injection Rate Shaping.
Technical Paper

1D Modeling of a High-Performance Engine Fueled with H2 And Equipped with A Low NOx Aftertreatment Device

2024-06-12
2024-37-0009
Hydrogen engines are currently considered as a viable solution to preserve the internal combustion engine as a power unit for vehicle propulsion. In particular, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations due to the reduced emission levels and high thermodynamic efficiency. This strategy is suitable for the purpose of passenger car applications and cannot be tailored in the field of high performance engine, where the air mass delivered would require oversized turbocharging systems or more complex charging solutions. For this reason, the range of stoichiometric feeding condition is explored in the high performance engine, leading to the consequent issue of abatement of pollutant emissions. In this work a 1D model will be applied to the modeling of a V8 engine fueled with DI of hydrogen. The engine has been derived by a gasoline configuration and adapted to hydrogen in such a way to keep the same performance.
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Technical Paper

1D-3D Coupled Simulation of the Fuel Spray Propagation Inside the Air-Box of a Moto3 Motorbike: Analysis of Spray Targeting and Injection Timing

2017-03-28
2017-01-0520
In this work an integration between a 1D code (Gasdyn) with a CFD code (OpenFOAM®) has been applied to improve the performance of a Moto3 engine. The four-stroke, single cylinder S.I. engine was modeled, in order to predict the wave motion in the intake and exhaust systems and to study how it affects the cylinder gas exchange process. The engine considered was characterized by having an air induction system with integrated filter cartridge, air-box and intake runner, including two fuel injectors, resulting in a complex air-path from the intake mouth to the intake valves, which presents critical aspects when a 1D modeling is addressed. The exhaust and intake systems have been optimized form the point of view of the wave action. However, due to the high revolution speed reached by this type of engine, the interaction between the gas stream and the fuel spray becomes a key aspect to be addressed in order to achieve the best performance at the desired operating condition.
Technical Paper

3D-CFD Methodologies for a Fast and Reliable Design of Ultra-Lean SI Engines

2022-06-14
2022-37-0006
The continuous pursuit of higher combustion efficiencies, as well as the possible usage of synthetic fuels with different properties than fossil-ones, require reliable and low-cost numerical approaches to support and speed-up engines industrial design. In this context, SI engines operated with homogeneous ultra-lean mixtures both characterized by a classical ignition configuration or equipped with an active prechamber represent the most promising solutions. In this work, for the classical ignition arrangement, a 3DCFD strategy to model the impact of the ignition system type on the CCV is developed using the RANS approach for turbulence modelling. The spark-discharge is modelled through a set of Lagrangian particles, whose velocity is modified with a zero-divergence perturbation at each discharge event, then evolved according to the Simplified Langevin Model (SLM) to simulate stochastic interactions with the surrounding gas flow.
Technical Paper

3D-CFD Modelling of Gas Exchange and Combustion Inside the Expander of a Recuperated Split-Cycle Engine

2023-08-28
2023-24-0130
The demand of game-changing technologies to improve efficiency and abate emissions of heavy-duty trucks and off-road vehicles promoted the development of novel engine concepts. The Recuperated Split-Cycle (R-SC) engine allows to recover the exhaust gases energy into the air intake by separating the compression and combustion stages into two different but connected cylinders: the compressor and expander, respectively. The result is a potential increase of the engine thermal efficiency. Accordingly, the 3D-computational fluid dynamics (CFD) modelling of the gas exchange process and the combustion evolution inside the expander becomes essential to control and optimize the R-SC engine concept. This work aims to address the most challenging numerical aspects encountered in a 3D numerical simulation of an R-SC engine.
Technical Paper

A 1,5 KW Electric Power Microcogeneration Unit Suitable for Domestic Applications

2011-09-11
2011-24-0108
The paper discusses the concept, specification and overall performance of a small microcogeneration unit of about 1,5 kW of electric power and about 4,5 kW of thermal power, suitable for domestic applications, designed at Istituto Motori CNR of Italy. This unit has been conceived specifically as a energy conversion system for houses, having in durability, electric and thermal efficiency the most important goals to be achieved. The paper starts by defining the state of art of small power microcogeneration units and then the ratio which leaded to the adoption of a single cylinder internal combustion engine derived from a motorcycle unit, in order to produce the above mentioned electric and thermal power. This is followed by an explanation of the main design characteristics of the system, with a discussion over the modified elements, made to enhance electric efficiency, emissions and durability and reduce, at the same time, cost coming from new design and manufacture.
Journal Article

A 1D/Quasi-3D Coupled Model for the Simulation of I.C. Engines: Development and Application of an Automatic Cell-Network Generator

2017-03-28
2017-01-0514
Nowadays quasi-3D approaches are included in many commercial and research 1D numerical codes, in order to increase their simulation accuracy in presence of complex shape 3D volumes, e.g. plenums and silencers. In particular, these are regarded as valuable approaches for application during the design phase of an engine, for their capability of predicting non-planar waves motion and, on the other hand, for their low requirements in terms of computational runtime. However, the generation of a high-quality quasi-3D computational grid is not always straightforward, especially in case of complex elements, and can be a time-consuming operation, making the quasi-3D tool a less attractive option. In this work, a quasi-3D module has been implemented on the basis of the open-source CFD code OpenFOAM and coupled with the 1D code GASDYN.
Technical Paper

A 2D Model for Tractor Tire-Soil Interaction: Evaluation of the Maximum Traction Force and Comparison with Experimental Results

2011-04-12
2011-01-0191
The paper investigates the interaction between soil and tractor tires through a 2D numerical model. The tire is schematized as a rigid ring presenting a series of rigid tread bars on the external circumference. The outer profile of the tire is divided into a series of elements, each one able to exchange a normal and a tangential contact force with the ground. A 2D soil model was developed to compute the forces at the ground-tire interface: the normal force is determined on the basis of the compression of the soil generated by the sinking of the tire. The soil is modeled through a layer of springs characterized by two different stiffness for the loading (lower stiffness) and unloading (higher stiffness) condition. This scheme allows to introduce a memory effect on the soil which results stiffer and keeps a residual sinking after the passage of the tire. The normal contact force determines the maximum value of tangential force provided before the soil fails.
Journal Article

A 3D CFD Simulation of GDI Sprays Accounting for Heat Transfer Effects on Wallfilm Formation

2017-09-04
2017-24-0041
During gasoline direct injection (GDI) in spark ignition engines, droplets may hit piston or liner surfaces and be rebounded or deposit in the liquid phase as wallfilm. This may determine slower secondary atomization and local enrichments of the mixture, hence be the reason of increased unburned hydrocarbons and particulate matter emissions at the exhaust. Complex phenomena indeed characterize the in-cylinder turbulent multi-phase system, where heat transfer involves the gaseous mixture (made of air and gasoline vapor), the liquid phase (droplets not yet evaporated and wallfilm) and the solid walls. A reliable 3D CFD modelling of the in-cylinder processes, therefore, necessarily requires also the correct simulation of the cooling effect due to the subtraction of the latent heat of vaporization of gasoline needed for secondary evaporation in the zone where droplets hit the wall. The related conductive heat transfer within the solid is to be taken into account.
Technical Paper

A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas

2022-03-29
2022-01-0470
Active prechamber combustion systems for SI engines represent a feasible and effective solution in reducing fuel consumption and pollutant emissions for both marine and ground heavy-duty engines. However, reliable and low-cost numerical approaches need to be developed to support and speed-up their industrial design considering their geometry complexity and the involved multiple flow length scales. This work presents a CFD methodology based on the RANS approach for the simulation of active prechamber spark-ignition engines. To reduce the computational time, the gas exchange process is computed only in the prechamber region to correctly describe the flow and mixture distributions, while the whole cylinder geometry is considered only for the power-cycle (compression, combustion and expansion). Outside the prechamber the in-cylinder flow field at IVC is estimated from the measured swirl ratio.
Technical Paper

A Calculation Procedure for the Evaluation of Cold Emissive Behavior of High-Performance Motorcycles

2011-09-11
2011-24-0200
All the experimental investigations performed in the last years on newly sold motorcycles, equipped with a three-way catalyst and electronic mixture control, clearly indicate that CO and HC cold additional emissions, if compared with those exhausted in hot conditions, represent an important proportion of total emissions. Consequently, calculation programs for estimating emissions from road transports for air quality modeling in dedicated local areas should take into consideration this effect. From this motivation, an experimental activity on motorcycles cold emissive behavior is being jointly conducted by Istituto Motori of the National Research Council (IM-CNR) and the Department of Mechanic and Energetic (DiME) of the University of Naples.
Technical Paper

A Comparative Analysis of Combustion Process in D.I. Diesel Engine Fueled with Biodiesel and Diesel Fuel

2000-03-06
2000-01-0691
The 1997 Kyoto International Conference Protocol committed industrialized countries to reduce their global emissions of greenhouse gases within the period 2008 2012 by at least 5% with respect to 1990. In view of this and following the European Community directives, the Italian government approved a three-year pilot project to promote the experimental employment of biodiesel. The methyl esters of vegetable oils, known as biodiesel are receiving increasing interest because of their low environmental impact and their potential as an alternative fuel for diesel engines as they would not require any significant modification of existing engines. Consequently, an experimental research program has been developed to evaluate performance and emissions of a Diesel engine fueled with a methyl ester derived from rape seed (Rapeseed Methyl Ester or RME) by changing the composition of the diesel fuel-RME mixture. This program aims to analyze the performance and emissions of a turbocharged D.I.
Journal Article

A Comparison Between External and Internal Resonators Employment to Reduce the Gas-Dynamic Noise of a SI Engine

2014-10-13
2014-01-2864
This paper reports 1D and 3D CFD analyses aiming to improve the gas-dynamic noise emission of a downsized turbocharged VVA engine through the re-design of the intake air-box device, consisting in the introduction of external or internal resonators. Nowadays, modern spark-ignition (SI) engines show more and more complex architectures that, while improving the brake specific fuel consumption (BSFC), may be responsible for the increased noise radiation at the engine intake mouth. In particular VVA systems allow for the actuation of advanced valve strategies that provide a reduction in the BSFC at part load operations thanks to the intake line de-throttling. In these conditions, due to a less effective attenuation of the pressure waves that travel along the intake system, VVA engines produce higher gas-dynamic noise levels.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

A Comprehensive Model to Predict the Initial Stage of Combustion in SI Engines

2013-04-08
2013-01-1087
A correct prediction of the initial stages of the combustion process in SI engines is of great importance to understand how local flow conditions, fuel properties, mixture stratification and ignition affect the in-cylinder pressure development and pollutant formation. However, flame kernel growth is governed by many interacting processes including energy transfer from the electrical circuit to the gas phase, interaction between the plasma channel and the flow field, transition between different combustion regimes and gas expansion at very high temperatures. In this work, the authors intend to present a comprehensive, multi-dimensional model that can be used to predict the initial combustion stages in SI engines. In particular, the spark channel is represented by a set of Lagrangian particles where each one of them acts as a single flame kernel.
Technical Paper

A Comprehensive Numerical Model for Numerical Simulation of Ice Accretion and Electro-Thermal Ice Protection System in Anti-icing and De-icing Mode, with an Ice Shedding Analysis

2023-06-15
2023-01-1463
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved.
Technical Paper

A Consistent Dual-Mesh Framework for Hybrid LES/RANS Simulations of Vehicle Exhaust Plumes: Implications for Remote Emission Sensing

2023-08-28
2023-24-0105
Remote emission sensing (RES) is a non-intrusive measurement method based on absorption spectroscopy, which allows for the determination of pollutant concentrations in vehicle exhaust plumes. By measuring the absorption of the exhaust plume from the roadside using a light/laser barrier, concentration ratios of pollutants, such as nitrogen oxides to carbon dioxide, can be estimated. Computational fluid dynamics (CFD) has been employed to simulate vehicle exhaust plumes due to uncertainties in RES capabilities. In a previous study, Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations were conducted to investigate the dispersion of vehicle exhaust plumes under various ambient/driving conditions and provide insights for RES applications. However, the accuracy of these simulations can be further improved. Therefore, this study focuses on enhancing the simulation accuracy by employing large eddy simulations (LES).
Journal Article

A Constant Equivalence Ratio Multi-Zone Approach for a Detailed and Fast Prediction of Performances and Emission in CI Engines

2022-03-29
2022-01-0381
The paper illustrates and validates a novel predictive combustion model for the estimation of performances and pollutant production in CI engines. The numerical methodology was developed by the authors for near real-time applications, while aiming at an accurate description of the air mixing process by means of a multi-zone approach of the air-fuel mass. Charge stratification is estimated via a 2D representation of the fuel spray distribution that is numerically derived by an axial one-dimensional control-volume description of the direct injection. The radial coordinate of each control volume is reconstructed a posteriori by means of a local distribution function. Fuel mass clustered in each zone is further split in ‘liquid’, ‘unburnt’ and ‘burnt’ sub-zones, given the local properties of the fuel spray control volumes with respect to space-time location of modelled ignition delay, liquid length, and flame lift-off.
Journal Article

A Correlation Study of Wind Tunnels for Reduced-Scale Automotive Aerodynamic Development

2016-04-05
2016-01-1598
Wind tunnel testing of reduced-scale models is a valuable tool for aerodynamic development during the early stages of a new vehicle program, when basic design themes are being evaluated. Both full-and reduced-scale testing have been conducted for many years at the General Motors Aerodynamics Laboratory (GMAL), but with increased emphasis on aerodynamic drag reduction, it was necessary to identify additional facilities to provide increased test capacity. With vehicle development distributed among engineering teams around the world, it was also necessary to identify facilities local to those teams, to support their work. This paper describes a cooperative effort to determine the correlation among five wind tunnels: GMAL, the Glenn L.
X