Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Field Testing and Computer Simulation Analysis of Ground Vehicle Dynamic Stability

1990-02-01
900127
This paper considers ground vehicle lateral/directional stability which is of primary concern in traffic safety. Lateral/directional dynamics involve yawing, rolling and lateral acceleration motions, and stability concerns include spinout and rollover. Lateral/directional dynamics are dominated by tire force response which depends on horizontal slip, camber angle and normal load. Vehicle limit maneuvering conditions can lead to tire force responses that result in vehicle spinout and rollover. This paper describes accident analysis, vehicle testing and computer simulation analysis designed to give insight into basic vehicle design variables that contribute to stability problems. Field test procedures and results for three vehicles are described. The field test results are used to validate a simulation model which is then analyzed under severe maneuvering conditions to shed light on dynamic stability issues.
Technical Paper

Characteristics Influencing Ground Vehicle Lateral/Directional Dynamic Stability

1991-02-01
910234
Lateral/directional dynamics involve vehicle yawing, rolling and lateral translation motions and dynamic stability concerns directional behavior (i.e. spinout) and rollover. Previous research has considered field test and computer simulation methods and results concerning lateral/directional stability. This paper summarizes measurements and simulation analysis of a wide range of vehicles regarding directional and rollover stability. Directional stability is noted to be strongly influenced by lateral load transfer distribution (LTD) between the front and rear axles LTD influences tire side force saturation properties, and should be set up so that side forces at the rear axle do not saturate before the front axle under hard maneuvering conditions in order to avoid limit oversteer and spinout.
X