Refine Your Search

Topic

Author

Search Results

Technical Paper

“Chamfer Analysis for Smooth Diagonal Shifting by Using ‘Creo-MECHANISM’ Tool”

2023-10-31
2023-01-1676
In current competitive automobile sector, gear shift quality has become significant factor for vehicle evaluation. OEMs are sensibly focusing on improving gear shift quality to meet customer’s expectations. Though there are different gear shifting habits in different drivers, diagonal shifting is the fastest way of shifting gears in manual transmission vehicle. So the components linked with shift system should be designed to facilitate smooth diagonal gear shift pattern. This paper enlightens the process of defining chamfers on internal gear shifting components for smooth diagonal shifting movement of gear shift lever. It is hard to define chamfers by analytical or practical approach. Creo-mechanism is very useful simulation tool which can be used to understand diagonal shift patterns and to define the chamfers.
Technical Paper

Use of Powder Metallurgy Based Connecting Rod for Diesel Engine Application

2023-05-25
2023-28-1352
The usage of forging a preformed, near net shape, compacted and sintered metal powder has been widely accepted since the eighties and is now one of the mainstays for producing Connecting rods in North America. However, its use in Indian subcontinent is limited as its counterpart i.e. conventional steel forging is still the most dominant. Powder metallurgy route has many advantages like good dimensional accuracy; minimum scattering of weight etc. Despite these advantages, the Powder metallurgy process is still not preferred predominantly due to technical (endurance) and infrastructural limitations. This work envisages combining the benefits of powder metallurgy process with the required mechanical properties viz. tensile and fatigue strength alongside design modifications to meet the requirements of a connecting rod for a 2-cylinder diesel engine. The connecting rods met the fatigue life at the required FOS equaling the performance of a conventionally forged connecting rod.
Technical Paper

Transmission Breather Evaluation

2019-01-09
2019-26-0339
Breather assembly is mounted on transmission to maintain the pressure equilibrium inside transmission. Breather allows the transmission to breathe air when the air inside transmission expands or contracts due to heating and cooling of lubricating oil during vehicle running. Breather allows the hot air to escape and cool air to enter into the transmission to prevent overheating issue. Failure of breather assembly can lead to pressure buildup inside transmission and further leading to leakage from transmission oil seals. Oil leakage through the breather assembly is governed by parameters such as opening pressure, location and orientation of breather etc. The transmission undergoes different operating conditions of input speed, load, temperature, inclination etc. Also, breather assembly is designed and positioned in such a way that there is no leakage through breather due to oil splash inside the transmission.
Technical Paper

Torsional Fluctuations Consideration while Design of Synchro Rings

2018-09-10
2018-01-1823
In today’s manual transmissions of car, gearshift system requires high performance with particular emphasis on low effort, minimal travel and positive feel. To meet these targets, a high capacity multi cone synchronizers along with higher co-efficient of friction material used for lower gears. The design of synchronizer with these specifications is influenced by torsional fluctuations from engine. Excessive torsional vibrations leads to wobbling of synchro rings within the peripheral clearances with surrounding parts. Wobbling leads to abrasion wear of frictional area of synchro ring causing grating or crashing noise of gears during shifting. This paper presents the optimization of the multiple cone synchronizer design exposed to excessive torsional vibrations and validation of the same on test bench during development stage instead vehicle level validation.
Technical Paper

Test Methodology with Shock Loads and Fatigue Limit of Press Fitted Gears on Shaft

2013-11-27
2013-01-2794
In case of new generation of commercial vehicles, three shaft transmissions are designed with press fitted gears on counter shaft. It allows user to save the cost of transmission manufacturing by considerable amount. In case of heavy commercial vehicles, which are being used in abusive conditions such as mining and off-road applications, it becomes absolutely necessary to ensure that the gears press fit should withstand the continuous loads and impact loads. There are design guidelines available to ensure proper fit and torque carrying capacity between the mating parts. Still, there are gear slippage, shaft and gear breakage failures in the field. In this scenario, there is a need to develop bench test procedure which will capture such failures in the prototype stage. Looking at the failures in the field, it is necessary to capture all above hidden failures in design validation phase.
Technical Paper

Study of Key Attributes of Sustainability of Automobile Solutions in India

2022-10-05
2022-28-0313
The changing mobility landscape of India reveals that the erstwhile transport modes of the 20th century i.e., railways and road buses are making way for airlines, personal vehicles, shared mobility, metro rails. Rapid technological changes, stricter regulations, new transport cultures autonomous, connected, electric and shared (ACES), state-of-the-art and environmental concerns are shaping up the eco-system for automobiles. Despite these challenges roadways and automobiles will continue to be most prominent solution in India for future. But for that, the automobile sector should be agile, innovative, and adaptable to changing eco-system, vigilant to thwart threat of alternate mobility solutions and must provide sustainable solutions for the future. The purpose of this paper to evaluate various mobility solutions, ascertain prominence of upcoming automobile solutions and their sustainability for future in India.
Technical Paper

Study of Clutch Judder Phenomenon in Manual Transmission Vehicle and Its Analysis Approach

2019-01-09
2019-26-0215
Clutch engagement judder is a phenomenon wherein the driver experiences vibrations on seat during the clutch engagement process for the vehicle launch. Clutch engagement judder is one of the critical vehicle attributes as a part of overall vehicle NHV. Torsional oscillations, specifically originating from clutch in the driveline during clutch engagement, are referred as clutch engagement judder. Judder is a phenomenon wherein friction induced torsional vibrations are generated in the driveline because of sliding contact between clutch and flywheel, during engagement. These resulting oscillations inherit the first resonance frequency of the driveline. The engagement judder not only affects the dynamics of transmission system but also the vehicle, because of excitations being transferred to body via suspensions and mounts. Passengers experience these oscillations as vibrations during vehicle launch. If excitation level is high then it may cause discomfort to passengers.
Technical Paper

Simulation of Driveline Rattle using Elastic Multi Body Dynamics Approach

2017-01-10
2017-26-0191
As automotive technology has evolved, gear rattle has become a prominent contributor for cabin noise as the masking from the engine noise has decreased. The market and customer expectation make the rattle noise a question to be addressed as early as possible in the vehicle development process. However, to simulate rattle, it calls for a detailed modeling of different complex subsystems of driveline to represent their true characteristics. Thus, the paper adopts an FE based elastic multi body dynamics model to predict gear rattle. The approach involves modeling of a complete flexible driveline using condensed FE models from Nastran in AVL Excite Powerunit/Transmission module. It includes combustion pressure as input excitations to crankshaft and then predicts parameters like gear teeth impacts, gear normal meshing force, dynamic mesh stiffness & overall contact state in transient and frequency domain. The output parameters are then analyzed to evaluate the rattle index.
Technical Paper

Simulation of Clutch Inertial Effects on Gear Shifting, Synchronizer Capacity and Accelerated Testing of Synchronizers

2013-11-27
2013-01-2807
In today's scenario, most of the OEMs use manual transmissions with synchronizer gear shifting system for ease of gear shifting. It gives very high fuel efficiency. Gear shifting is a customer touch point, hence it is very important to select adequate synchronizer capacity so that it will perform in better and last longer. To test the synchronizers, there are many test methods which give the idea about life of synchronizer and its performance, in different conditions. Regular synchronizer rig tests consume lot of time in deriving the results. So it is very important to find out a way which will give same results within short time period. To carry out the short time test or accelerated test, we need to understand the effect of various factors like reflected inertia, drag torque, differential speed, synchronizing time, and gear shifting force on synchronizer capacity.
Technical Paper

Simulation Based Development, Component Optimization and Integration for a Metropolitan Hybrid Electric Vehicle

2017-01-10
2017-26-0084
The authors of this technical paper conceptualize and illustrate a powertrain architecture for a hybrid electric vehicle coupled with a unique strategy to reduce a real life problem of driving in snail paced traffic. This architecture utilizes a relatively low powered hybrid electric prime mover that is generally used in mild hybrid vehicles, in an arrangement similar to a parallel hybrid system. Here, the electric machine is mounted on the input shaft of the gearbox and the clutch is actuated automatically through an Automated Manual Transmission (AMT) system. Therefore, it is possible to completely disengage the engine from the driveline and drive the vehicle independently through an appropriately sized electric prime mover. The high gear ratio between the drivetrain and the electric prime mover at lower gears can be leveraged to provide low velocity electric creep mode during which the vehicle can function as a pure Electric Vehicle (EV) while engine remains off.
Technical Paper

Simulating Bowden Cable Routing on Virtual Vehicle and Design Guidelines to Achieve the Best Cable Performance

2016-09-27
2016-01-8060
There has been immense focus on Gear Shift Quality as it is seen as an important factor for subjective evaluation of driving comfort of a vehicle with manual transmission. Synchronizer and driveline stiffness optimization is often the only area of focus for gear shift quality during early design stage. Proven Simulation models are already available for predicting the effect of synchronizer and driveline stiffness. Though Gear shift cable also has a significant effect on gear shift quality, neither design guidelines nor simulation models are available for predicting gear shift cable performance. Designers have relied on physical approach to establish cable routing, since cable routing cannot be predicted on virtual vehicle. In design phase cable routing is imagined and modeled in CAD using constrained curve geometry and later on established by physical trials on vehicle with various cable lengths, routing paths and clamp positions.
Technical Paper

Sensitivity of LCA Bush Stiffness in Judder while Braking for Twist Blade Type Suspension in Passenger Cars

2021-09-22
2021-26-0513
This paper deals with specific NVH related issues attributed due to LCA bush stiffness and Brake rotor DTV. While the focus is on the cause of such vibration (judder while braking at 120 kmph), the presentation goes to the root-cause of judder and how various suspension/tire/brake components contribute to the generation/amplification of such vibration. Results are presented for twist blade types of vehicle suspensions, along with procedures that were developed specifically for this study and some of the actual case study. DTV-Disk thickness variation
Technical Paper

Regulatory Norms and Effect on Transmission Component Validation

2021-09-22
2021-26-0460
With the advent of BS VI regulations, automotive manufacturers are required to innovate the powertrains, fuel systems, exhaust and its after treatment systems to meet the regulatory requirements. The exhaust regulations can be met either by reducing the exhaust gases being generated by the engine (attacking the source) or by treating the exhaust gases in after treatment devices. The choice of the opted system varies with the manufacturer. The after-treatment devices such as catalytic converters are generally mounted in the engine compartment to take advantage of high temperature of exhaust gases to yield the reactions. Such an arrangement imposes a lot of thermal load on the peripheral components such as gearshift cables, bearings, oil seals, driveshafts etc. Thermal shields or thermal sleeve are used to address thermal issue and to protect transmission components.
Technical Paper

Reduction of Idle Shake in a Small Commercial Vehicle

2015-06-15
2015-01-2352
Noise Vibration and Harshness (NVH) refinement is one of the important parameters in modern vehicle development. In city traffic conditions, idling is an engine operating condition where a driver focuses attention more to his/her vehicle. Tactile vibration & noise levels inside the cab play an important role in all vehicles, especially those powered by diesel engines where combustion pressures are higher. They lead to discomfort & fatigue of passengers of even a low cost vehicle. Now its idle NVH is influenced mainly by vibration-isolation provided by power-train (PT) mounting design, This paper describes steps taken to improve the idle vibrations at a driver seat of a small commercial vehicle (SCV) with a 2-cylinder diesel engine of 800 cc through redesign of PT-mounting along with fine tuning of idle speed of the engine. A resonance was avoided between the first firing order at idling and PT rigid-body mode in pitching.
Technical Paper

Radiated Noise Reduction in a Single Cylinder Direct Injection (DI) Naturally Aspirated (NA) Engine

2011-05-17
2011-01-1503
Small goods carrier and passenger vehicles powered by Naturally Aspirated (NA) Direct Injection (DI) diesel engines are popular in Indian automobile market. However, they suffer from inherently high radiated noise and poorly perceived sound quality. This paper documents the steps taken to reduce the radiated noise level from such an engine through structural modifications of major noise radiating components identified in the sound power analysis. The work is summarized as follows; Baseline radiated noise measurements of power train and identification of major noise sources through sound intensity mapping and noise source ranking (NSR) in an Engine Noise Test Cell (ENTC) Design modifications for identified major sources in engine structure Vehicle level assessment of the radiated noise in a Vehicle Semi-Anechoic Chamber (VSAC) for all the design modifications. A reduction of 7 dB at hot idle and 4 - 8 dB in loaded speed sweep conditions was observed with the recommended modifications.
Technical Paper

Practical Approach to Enhance Gear Shift Quality in Automatic Transmissions

2021-04-06
2021-01-0688
Passenger utility vehicles like car, SUVs, MPVs are used in wide application all over the world. Luxuries are becoming essential features of product mix along with comfort and ergonomics. Customer desires best shift quality with emerging technologies like AT, DCT, CVT, etc. and every OEM is working hard to achieve it. It is very difficult to satisfy the customer desire because of diversities in demographics and geographic. Gear shift quality (GSQ) is very crucial touch point in overall drive feel of vehicle. It consist of various parameters like mode selection feel, precision, comfort, select Noise, etc. It demands tradeoff practices among various parameters as stated. In this paper, external mode selection system of automatic transmission is explained. Various contributing parameters are explained with practical design approach for detent profile, mode selection mechanism, cable & dampers, etc.
Journal Article

Optimization of Exhaust Muffler Design Variables for Transmission Loss Using Coupling of modeFRONTIER and GT-POWER

2021-08-31
2021-01-1042
Exhaust Noise attenuation is one of the important functions of exhaust muffler. Transmission Loss (TL) is a measure of noise attenuation used in designing exhaust mufflers for NVH. TL is a logarithmic difference between inlet and outlet pressures for unit velocity input at inlet of the muffler and anechoic termination at outlet of the muffler as boundary conditions. TL amplitude and its frequency tuning depends on a combination of various muffler design parameters like volume, length, muffler cross section, pipe cross sections, pipe perforations, number of chambers, baffle perforations, etc. Achieving the desired TL performance with no valleys over a wide frequency range is very challenging. Manual design iterations with large numbers of permutations and combinations of design variables are difficult and time-consuming. It also needs a highly experienced professional to balance TL performance, design variables and design constraints.
Technical Paper

Optimization of Engine Mounting System for First Gear Launch Judder

2020-04-14
2020-01-0416
Normal engine mounting system is designed to carry loads of powertrain in all driving conditions and also isolate the vibrations of powertrain. Softer mounts are good for vibration isolation but it is not recommended to have softer mounts because durability will be affected adversely. Optimum stiffness needs to be finalized which will have balance between durability and performance. In addition to durability many performance parameters needs to be checked during the time of development. This study includes the development of engine mounting system for elimination of drive away judder in first gear. Maximum peak torque value for the drive-away event is in the range of 80Nm - 120Nm. In the worst case, this peak torque can reach to maximum 170Nm depending on maneuver, engine rpm is around 1100-1200. Steering wheel, instrument panel and whole vehicle cabin will vibrate for few seconds and then vehicle will run smoothly.
Technical Paper

Modeling and Simulation of Clutch Damper Spring Saturation Phenomenon

2021-08-31
2021-01-1104
In modern automotive vehicles, there is a major concern for noise and vibrations generating from drivetrain. These noise and vibrations affect the passenger comfort and drivetrain parts life. Engine generates fluctuating torque and causes angular acceleration that results into torsional vibrations. These vibrations are transmitted to powertrain. Clutch disc consists damper springs and hysteresis which aids reducing these torsional vibrations. Based on the damper spring stiffness, one can control the resonance speed range and shift the resonance rpm out of driving speed range of engine. The resonance should not happen within driving speed range of vehicle to avoid large amplitude torsional vibration. But here limitation is put on the torque transmission capability of clutch for meeting vehicle requirements. As, low stiffness of damper spring requires large wind-up angle so, it is critical to decide its stiffness.
Technical Paper

Modeling a Roof-Mounted Solar Panel Automobile - Benefits and Path Forward

2015-01-14
2015-26-0053
With ever increasing population growth and increase in per capita income, there is a lot of demand on energy requirements. Also due to depletion in fossil fuels, rocketing fuel prices and CO2 emissions standards, it is imperative to find solutions which are cost-effective and from sustainable energy sources. Being in the sunny tropical belt, India has high solar insolation, and so it should adopt a policy of developing solar power as a dominant component of the renewable energy mix. This paper describes the best possible ways to use solar energy for automotive application. This paper explains various types of photovoltaic (PV) technologies - crystalline and thin film solar cells for automotive use. A medium sized sedan vehicle with mild hybrid technology and roof mounted PV panel has been used for all experiments. The paper describe the benefits and limitations of each PV technology with experimental measurement and payback period analysis.
X