Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Vehicular Emissions in Review

2013-04-08
2013-01-0538
This review paper summarizes major developments in vehicular emissions regulations and technologies (light-duty, heavy-duty, gasoline, diesel) in 2012. First, the paper covers the key regulatory developments in the field, including finalized criteria pollutant tightening in California; and in Europe, the development of real-world driving emissions (RDE) standards. The US finalized LD (light-duty) greenhouse gas (GHG) regulation for 2017-25. The paper then gives a brief, high-level overview of key developments in LD and HD engine technology, covering both gasoline and diesel. Marked improvements in engine efficiency are summarized for gasoline and diesel engines to meet both the emerging NOx and GHG regulations. HD engines are just starting to demonstrate 50% brake thermal efficiency. NOx control technologies are then summarized, including SCR (selective catalytic reduction) with ammonia, and hydrocarbon-based approaches.
Technical Paper

Using Intake Valve Deposit Cleanup Testing as a Combustion Chamber Deposit Discriminator

1998-10-19
982714
Carefully controlled intake valve deposit (IVD) cleanup testing is found to be an effective method for differentiating the effect of the deposit control additives on combustion chamber deposits (CCD). The IVD buildup procedure produces a consistent initial level of CCD that the cleanup additive, the additive of interest, continues to build on until the end of the cleanup test. This “end of cleanup” CCD is found to be as repeatable and differentiable a measurement as tests run under the more common “keep clean” type operation. While IVD cleanup testing induces a mid-test disturbance in the form of the end of buildup measurement, it aligns well with two key CCD protocols in terms of the higher additive treat rates used and the extended total test length. In an analysis of results from IVD cleanup tests run using four different engine/vehicle procedures on seven different additives, several findings stood out.
Technical Paper

Using Cloud Point Depressants Opportunistically To Reduce No.2 Diesel Fuel Cloud Point Giveaway

2001-05-07
2001-01-1927
Diesel fuel is a blend of various middle distillate components separated at the refinery. The composition and characteristics of the diesel fuel blend changes daily if not hourly because of normal process variation, changing refinery processing conditions, changing crude oil diet or changing diesel fuel and kerosene market conditions. Regardless of the situation going on at the refinery or the market, the resultant diesel fuel must consistently meet established cloud point specifications. To consistently meet the cloud point specifications, refiners are forced to blend their diesel fuels in such a way that the resultant blend is always on the low side of the cloud point specification even when the refining process adversely changes the fuel characteristics. This practice has the effect of producing several degrees of cloud point “giveaway” when the refinery is not experiencing adverse swings in product quality.
Technical Paper

Two-Dimensional Transient Monolith Model for Selective Catalytic Reduction using Vanadia-based Catalyst

2008-01-09
2008-28-0022
In this paper, we report the modeling of the selective catalytic reduction (SCR) of NOx using ammonia on a commercial vanadia-titania based catalyst. The model combines a steady-state two-dimensional channel model with a transient two- or three-dimensional monolith model of the whole catalytic monolith converter. The reaction mechanism includes the standard and fast SCR reactions and also the high-temperature oxidation of ammonia to model the decrease in conversion observed at higher temperatures. We used in-house experimental data spanning a wide range of inlet compositions and temperatures to validate the model. The model was found to be in excellent quantitative agreement with the experimental data.
Technical Paper

The Impact of Lubricant and Fuel Derived Sulfur Species on Efficiency and Durability of Diesel NOx Adsorbers

2004-10-25
2004-01-3011
Global emission legislations for diesel engines are becoming increasingly stringent. While the exhaust gas composition requirements for prior iterations of emission legislation could be met with improvements in the engine's combustion process, the next issue of European, North American and Japanese emission limits greater than 2005 will require more rigorous measures, mainly employment of exhaust gas aftertreatment systems. As a result, many American diesel OEMs are considering NOx adsorbers as a means to achieve 2007+ emission standards. Since the efficacy of a NOx adsorber over its lifetime is significantly affected by sulfur (“sulfur poisoning”), forthcoming reductions in diesel fuel sulfur (down to 15 ppm), have raised industry concerns regarding compatibility and possible poisoning effects of sulfur from the lubricant.
Technical Paper

The Effect of Heavy Loads on Light Duty Vehicle Axle Operating Temperature

2005-10-24
2005-01-3893
With the continued growth of the sport utility vehicle (SUV) market in North America in recent years more emphasis has been placed on fluid performance in these vehicles. In addition to fuel economy the key performance area sought by original equipment manufacturers (OEMs) in general has been temperature reduction in the axle. This is being driven by warranty claims that show that one of the causes of axle failure in these type vehicles is related to overheating. The overheating is, in turn, caused by high load situations, e.g., pulling a large trailer at or near the maximum rated load limit for the vehicle, especially when the vehicle or its main subcomponents are relatively new. The excessive temperature generally leads to premature failure of seals, bearings and gears. The choice of lubricant can have a significant effect on the peak and stabilized operating temperature under these extreme conditions.
Technical Paper

Supporting the Transportation Industry: Creating the GC-LB and High-Performance Multiuse (HPM) Grease Certification Programs

2023-10-31
2023-01-1652
This paper outlines the history and background of the NLGI (formerly known as the National Lubricating Grease Institute) lubricating grease specifications, GC-LB classification of Automotive Service Greases as well as details on the development of new requirements for their High-Performance Multiuse (HPM) grease certification program. The performance of commercial lubricating grease formulations through NLGI's Certification Mark using the GC-LB Classification system and the recently introduced HPM grease certification program will be discussed. These certification programs have provided an internationally recognized specification for lubricating grease and automotive manufacturers, users and consumers since 1989. Although originally conceived as a specification for greases for the re-lubrication of automotive chassis and wheel bearings, GC-LB is today recognized as a mark of quality for a variety of different applications.
Technical Paper

Sub-23nm Particle Emissions from China6 Gasoline Vehicles over Various Driving Cycles

2023-04-11
2023-01-0395
Sub-23nm particles emission from the light-duty vehicle is widely discussed now and possible to be counted into the next stage emission legislation, such as Euro7. In this article, 16 China6 gasoline vehicles were tested over the WLTC and two surrogate RDE lab cycles for particulate number (PN) emission, the difference between PN23 (particle size >23nm) and PN10 (particle size>10nm) emission was analyzed. Testing results showed that the average PN10 emission increased 59% compared to PN23, which will bring great challenges for those vehicles to meet the future regulation requirement if sub-23nm particle is counted. The sub-23nm particles emission was proportional to the PN23 particles emission and generated mostly from the cold start or the transient engine conditions with rich combustion. Compared to the proposal of Euro 7, PN10 emission from some tested vehicles will need further two orders of magnitude reduction.
Technical Paper

Study of Diesel and Ethanol Blends Stability

2003-10-27
2003-01-3191
Characteristics of E diesel, a fuel blend of diesel fuel and ethanol, are considered in a matrix of tests. One characteristic of particular concern and a subject of this investigation is that of stability. Methods to evaluate stability are looked at and compared in light of the potential for distillate and ethanol to separate under certain conditions. The quality of the fuel blend is enhanced by the use of enabling additives to ensure stability which necessitates development of a standard for assessment of the quality of stability. The properties of various base diesel fuels and their influence on stability are also studied. Other key characteristics are evaluated including viscosity, pour point, and oxidative stability.
Technical Paper

Silicon Carbide for Diesel Particulate Filter Applications:Material Development and Thermal Design

2002-03-04
2002-01-0324
Recently, SiC has been investigated and pursued as an alternative material for diesel particulate filter (DPF) applications. SiC has acceptable physical properties such as good thermal conductivity, refractoriness, and chemical durability. Materials for DPF applications require a particular mean pore size, porosity, and permeability. In addition, these material attributes must be coupled to an appropriate thermal design so that the filter can survive the extreme temperature gradients generated during the regeneration process. In this report several approaches to making porous SiC will be discussed and performance data based on material properties and thermal design will be presented.
Technical Paper

Review of Exhaust Emissions of Compression Ignition Engines Operating on E Diesel Fuel Blends

2003-10-27
2003-01-3283
Recently, research and testing of oxygenated diesel fuels has increased, particularly in the area of exhaust emissions. Included among the oxygenated diesel fuels are blends of diesel fuel with ethanol, or E diesel fuels. Exhaust emissions testing of E diesel fuel has been conducted by a variety of test laboratories under various conditions of engine type and operating conditions. This work reviews the existing public data from previous exhaust emissions testing on E diesel fuel and includes new testing performed in engines of varied design. Emissions data compares E diesel fuel with normal diesel fuel under conditions of different engine speeds, different engine loads and different engine designs. Variations in performance under these various conditions are observed and discussed with some potential explanations suggested.
Journal Article

Regeneration Strategies for an Enhanced Thermal Management of Oxide Diesel Particulate Filters

2008-04-14
2008-01-0328
Diesel particulate filters are expected to be used on most passenger car applications designed to meet coming European emission standards, EU5 and EU6. Similar expectations hold for systems designed to meet US Tier 2 Bin 5 standards. Among the various products oxide filter materials, such as cordierite and aluminum titanate, are gaining growing interest due to their unique properties. Besides the intrinsic robustness of the filter products a well designed operating strategy is required for the successful use of filters. The operating strategy is comprised of two elements: the soot estimation and the regeneration strategy. In this paper the second element is discussed in detail by means of theoretical considerations as well as dedicated engine bench experiments. The impact the key operating variables, soot load, exhaust mass flow, oxygen content and temperature, have on the conditions inside the filter are discussed.
Technical Paper

Reducing Deposits in a DISI Engine

2002-10-21
2002-01-2660
Direct injection spark ignition (DISI) engine technology offers tremendous potential advantages in fuel savings and is likely to command a progressively increasing share of the European passenger vehicle market in the future. A concern is its propensity to form deposits on the inlet valve. In extreme cases, these deposits can lead to poor drivability and deteriorating emission performance. This inlet valve deposit build up is a well-known phenomenon in DISI engines since even additised fuel cannot wash over the back of intake valves to keep them clean. Two lubricants and two fuels were tested in a four car matrix. One of the lubricants was a fluid specifically developed by Lubrizol for DISI technology; the other was a baseline oil meeting Ford lubricants requirements and was qualified to ACEA A1/B1/ ILSAC GF2 performance level. Similarly, a baseline fuel was tested against an additised system.
Technical Paper

Principles for the Design of Diesel Oxidation Catalysts

2002-05-06
2002-01-1723
The diesel oxidation catalyst is required to remove hydrocarbons and carbon monoxide from the diesel engine exhaust stream while minimizing the impact of all other features such as cost, space, pressure drop, weight, fuel consumption, etc. The challenge of designing a catalytic converter for a particular application then becomes to: first, understand the emissions and other performance targets and requirements for the engine; second, understand the influence each of the converter parameters has on the overall system performance and; third, optimize the system using these relationships. This paper will explore some of the considerations with respect to the second of the above challenges.
Technical Paper

Predicting Pressure Drop of Wall-Flow Diesel Particulate Filters - Theory and Experiment

2000-03-06
2000-01-0184
Information on transport mechanisms in a Diesel Particulate Filter (DPF) provides crucial insight into the filter performance. Extensive experimental work has been pursued to modify, customize and validate a model yielding accurate predictions of a ceramic wall-flow DPF pressure drop. The model accounts, not only for the major pressure drop components due to flow through porous walls but also, for viscous losses due to channel plugs, flow contraction and expansion due to flow entering and exiting the trap and also for flow secondary inertial effects near the porous walls. Experimental data were collected on a matrix of filters covering change in filter diameter and length, cell density and wall thickness and for a wide range of flow rates. The model yields accurate predictions of DPF pressure drop with no particulate loading and, with adequate adjustment, it is also capable of making predictions of pressure drop for filters lightly-loaded with particulates.
Technical Paper

Performance Evaluations of Aluminum Titanate Diesel Particulate Filters

2007-04-16
2007-01-0656
Over the past decade, regulations for mobile source emissions have become more stringent thus, requiring advances in emissions systems to comply with the new standards. For the popular diesel powered passenger cars particularly in Europe, diesel particulate filters (DPFs) have been integrated to control particulate matter (PM) emissions. Corning Incorporated has developed a new proprietary aluminum titanate-based material for filter use in passenger car diesel applications. Aluminum titanate (hereafter referred to as AT) filters were launched commercially in the fall of 2005 and have been equipped on more than several hundred thousand European passenger vehicles. Due to their outstanding durability, filtration efficiency and pressure drop attributes, AT filters are an excellent fit for demanding applications in passenger cars. Extensive testing was conducted on engine to evaluate the survivability and long-term thermo-mechanical durability of AT filters.
Journal Article

Oxide Based Particulate Filters for Light-Duty Diesel Applications - Impact of the Filter Length on the Regeneration and Pressure Drop Behavior

2008-04-14
2008-01-0485
Diesel particulate filters are becoming a standard for most light duty diesel applications designed for European EU5 and EU6 regulations. Oxide based filter materials are continuing to gain significant interest and have been in high volume serial application since 2005. Compared to carbide materials they show some unique properties. With respect to the design, the length of a filter is a key variable. Usually the prime design consideration is the desired filter volume. The diameter or frontal area is then usually defined by packaging constraints. Finally, the length is adapted. The paper provides experimental data on the impact this key design parameter has on the pressure drop and the thermal behavior under “worst case” regeneration conditions. A wide range of soot loads (from 4 g/dm3 to 9 g/dm3) as well as filter lengths from 6″ to 12″ is considered and evaluated under comparable experimental conditions.
Technical Paper

Over a Decade of LTMS

2004-06-08
2004-01-1891
The Lubricant Test Monitoring System (LTMS) is the calibration system methodology and protocol for North American engine oil and gear oil tests. This system, administered by the American Society for Testing Materials (ASTM) Test Monitoring Center (TMC) since 1992, has grown in scope from five gasoline engine tests to over two dozen gasoline, heavy duty diesel and gear oil tests ranging from several thousand dollars per test to almost one-hundred thousand dollars per test. LTMS utilizes Shewhart and Exponentially Weighted Moving Average (EWMA) control charts of reference oil data to assist in the decision making process on the calibration status of test stands and test laboratories. Equipment calibration is the backbone step necessary in the unbiased evaluation of candidate oils for oil quality specifications.
Technical Paper

Opportunity for Diesel Emission Reductions Using Advanced Catalysts and Water Blend Fuel

2000-03-06
2000-01-0182
This paper features the results of emission tests conducted on diesel oxidation catalysts, and the combination of diesel oxidation catalysts and water blend fuel (diesel fuel continuous emulsion). Vehicle chassis emission tests were conducted using an urban bus. The paper reviews the impact and potential benefits of combining catalyst and water blend diesel fuel technologies to reduce exhaust emissions from diesel engines.
Technical Paper

On-Vehicle Fuel Cut Testing for Gasoline Particulate Filter Applications

2019-04-02
2019-01-0968
With the introduction of a stringent particulate number (PN) limit and real driving emission (RDE) requirements, gasoline particulate filters (GPF) are widely adopted for gasoline engines in Europe and China. The filter collects soot and ash. Like in diesel applications, the collected soot will continuously burn under favorable exhaust conditions. However, at extreme conditions, there could be large amounts of soot build-up, which may induce a highly exothermal event, potentially damaging the filter. Thus, it is important to understand what drives the over-heating in application, and develop counter measures. In this study, an on-vehicle fuel cut (FC) testing procedure was developed. The testing was conducted on two vehicles, one gasoline direct injection (GDI) vehicle and one multiple port injection (MPI) vehicle, with different exhaust systems designs (a close coupled GPF and an under floor GPF) and catalyst coating levels (bare and heavily coated GPFs).
X