Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Variation in Autobody Adhesive Curing Process

1999-03-01
1999-01-0997
Adhesive joining is a common autobody subassembly technique especially for outer panels, where visible spot welding is objectionable. To accommodate mass production with the use of certain adhesives very high thermal gradient usually exists, which may result in panel dimensional distortion and variation. The temperature distribution over location and over time are monitored, and its impact to panel dimension is investigated. Experimental results on the effect of the distance between panel and induction coil on the panel temperature is obtained. The thermal induced shape distortion is simulated with a simplified FEA model. The approach to improvement of the induction curing process is discussed.
Technical Paper

The Effect of Vehicle Exhaust System Components on Flow Losses and Noise in Firing Spark-Ignition Engines

1995-05-01
951260
Sound attenuation and flow loss reduction are often two competing demands in vehicle breathing systems. The present study considers a full vehicle exhaust system and investigates both the sound attenuation and the flow performance of production configurations including the catalyst, the resonator, and the muffler. Dynamometer experiments have been conducted with a firing Ford 3.0L, V-6 engine at wide-open throttle with speeds ranging from 1000 to 5000 rpm. Measurements including the flow rates, the temperatures and the absolute dynamic pressures of the hot exhaust gases at key locations (upstream and downstream of every component) with fast-response, water-cooled piezo-resistive pressure transducers facilitate the calculation of acoustic performance of each component, as well as the determination of flow losses caused by these elements and their influence on the engine performance.
Technical Paper

Testing and Modeling of Frequency Drops in Resonant Bending Fatigue Tests of Notched Crankshaft Sections

2004-03-08
2004-01-1501
Resonant frequencies of a resonant bending system with notched crankshaft sections are obtained experimentally and numerically in order to investigate the effect of notch depth on the drop of the resonant frequency of the system. Notches with the depths ranging from 1 to 5 mm, machined by an EDM (Electrical-Discharging Machining) system, were introduced in crankshaft sections at the fillet between the main crank pin and crank cheek. The resonant frequencies of the resonant bending system with the crankshaft sections with various notch depths were first obtained from the experiments. Three-dimensional finite element models of the resonant bending system with the crankshafts sections with various notch depths are then generated. The resonant frequencies based on the finite element computations are in good agreement with those based on the experimental results.
Technical Paper

SIMULATION OF A VEHICLE SUSPENSION WITH THE ADAMS COMPUTER PROGRAM

1977-02-01
770053
This paper describes a computer simulation of the front suspension of a 1973 Chevrolet Malibu using the ADAMS (Automatic Dynamic Analysis of Mechanical Systems) computer program. The model was proposed by the SAE Fatigue Design and Evaluation Committee for evaluating the speed, economy and accuracy of various computer simulations in predicting displacements and loads in a suspension system. A comparison between experimental and simulated results is given.
Technical Paper

Real Time Detection Filters for Onboard Diagnosis of Incipient Failures

1989-02-01
890763
This paper presents the real time implementation of detection filters for the diagnosis of incipient failures in electronically controlled internal combustion (IC) engines. The detection filters are implemented in a production vehicle. Recent results [1] have demonstrated the feasibility of a model-based failure detection and isolation (FDI) methodology for detecting partially failed components in electronically controlled vehicle subsystems. The present paper describes the real time application of the FDI concept to the detection of faults in sensors associated with the engine/controller In a detection filter, the performance of the engine/controller system is continuously compared to a prediction based on sensor measurements and an analytical model (typically a control model) of the system. Any discrepancy between actual and predicted performance is analyzed to identify the unique failure signatures related to specific system components.
Technical Paper

Reactor Studies for Exhaust Oxidation Rates

1973-02-01
730203
A laboratory test reactor has been used to determine the rates of oxidation of carbon monoxide (CO), hydrocarbons (HCs) as a class, and hydrogen (H2). The feed was supplied from the exhaust of a single-cylinder engine, with additions of H2 and CO in some runs. The test reactor was designed to be well mixed, and this was verified experimentally for mixing on macroscopic and microscopic scales. Wall effects were found to be unimportant. Kinetic data from 157 runs were correlated with global reaction rate expressions containing Arrhenius temperature dependence and power law concentration dependence. CO oxidation was found to be approximately 1/4 order in CO with an activation energy of 28,200 cal/g-mole. HC oxidation was found to be approximately 1/4 order in HC and 1/2 order in each of O2, CO, and NO with an activation energy of 29,800 cal/g-mole. H2 oxidation rates were not well correlated, but a zero-order rate with an activation energy of 52,000 cal/g-mole is reasonable.
Technical Paper

Modeling of Effort Perception in Lifting and Reaching Tasks

2001-06-26
2001-01-2120
Although biomechanics models can predict the stress on the musculoskeletal system, they cannot predict how the muscle load associated with exertion is perceived. The short-term goal of the present study was to model the perception of effort in lifting and reaching tasks. The long-term goal is to determine the correlation between objective and subjective measures of effort and use this information to predict fatigue or the risk of injury. Lifting and reaching tasks were performed in seated and standing situations. A cylindrical object and a box were moved with one hand and two hands, respectively, from a home location to shelves distributed in the space around the subject. The shoulder and torso effort required to perform these tasks were rated on a ten point visual analog scale.
Technical Paper

Modeling and Testing of Spot Welds under Dynamic Impact Loading Conditions

2002-03-04
2002-01-0149
Failure behavior of spot welds is investigated under impact loading conditions. Three different impact speeds were selected to test both HSLA steel and mild steel specimens under combined opening and shear loading conditions. A test fixture was designed and used to obtain the failure loads of spot weld specimens of different thicknesses under a range of combined opening and shear loads with different impact speeds. Accelerometers were installed on the fixtures and the specimens for investigation of the inertia effects. Optical micrographs of the cross sections of failed spot welds were obtained to understand the failure processes in both HSLA steel and mild steel specimens under different combined impact loads. The experimental results indicate that the failure mechanisms of spot welds are very similar for both HSLA steel and mild steel specimens with the same sheet thickness. These micrographs show that the sheet thickness can affect the failure mechanisms.
Technical Paper

Measurements and Predictions of Steady-State and Transient Stress Distributions in a Diesel Engine Cylinder Head

1999-03-01
1999-01-0973
A combined experimental and analytical approach was followed in this work to study stress distributions and causes of failure in diesel cylinder heads under steady-state and transient operation. Experimental studies were conducted first to measure temperatures, heat fluxes and stresses under a series of steady-state operating conditions. Furthermore, by placing high temperature strain gages within the thermal penetration depth of the cylinder head, the effect of thermal shock loading under rapid transients was studied. A comparison of our steady-state and transient measurements suggests that the steady-state temperature gradients and the level of temperatures are the primary causes of thermal fatigue in cast-iron cylinder heads. Subsequently, a finite element analysis was conducted to predict the detailed steady-state temperature and stress distributions within the cylinder head. A comparison of the predicted steady-state temperatures and stresses compared well with our measurements.
Technical Paper

Investigation of Airbag-Induced Skin Abrasions

1992-11-01
922510
Static deployments of driver-side airbags into the legs of human subjects were used to investigate the effects of inflator capacity, internal airbag tethering, airbag fabric, and the distance from the module on airbag-induced skin abrasion. Abrasion mechanisms were described by measurements of airbag fabric velocity and target surface pressure. Airbag fabric kinematics resulting in three distinct abrasion patterns were identified. For all cases, abrasions were found to be caused primarily by high-velocity fabric impactrather than scraping associated with lateral fabric motion. Use of higher-capacity inflators increased abrasion severity, and untethered airbags produced more severe abrasions than tethered airbags at distances greater than the length of the tether. Abrasion severity decreased as the distance increased from 225 to 450 mm. Use of a finer-weave airbag fabric in place of a coarser-weave fabric did not decrease the severity of abrasion.
Technical Paper

Impact of Part Variation on In-Process Coordinate Measurements for Automotive Body Assemblies

1998-09-29
982273
Coordinate measurement gages dominate in the area of dimensional control and variation reduction of automotive body assembly processes. However, coordinate measurement gages do not have the capability to track certain measured features. This incapability introduces inherent measurement error created by part (feature) mislocation in constrained non-measured directions. This inherent measurement error weakens the methods used for process control and variation reduction. In this paper, a principle of measurement uncertainty is developed in order to estimate the measurement error caused by this deficiency. The developed principle describes measurement error, which is independent of any other error related to the mechanical or optical coordinate measurement machines (CMMs, OCMMs). Additionally, an error map determined by the measurement uncertainty principle is created for error compensation.
Technical Paper

Fatigue Failures of Spot Friction Welds in Aluminum 6111-T4 Sheets Under Cyclic Loading Conditions

2006-04-03
2006-01-1207
Fatigue failures of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets under cyclic loading conditions are investigated in this paper. The paths of fatigue cracks near the spot friction welds are first discussed. A fatigue crack growth model based on the Paris law for crack propagation and the global and local stress intensity factors for kinked cracks is then adopted to predict the fatigue lives of these spot friction welds. The global stress intensity factors and the local stress intensity factors based on the recent published works for resistance spot welds in lap-shear specimens are used to estimate the local stress intensity factors for kinked cracks with experimentally determined kink angles. The results indicate that the fatigue life predictions based on the Paris law and the local stress intensity factors as functions of the kink length agree well with the experimental results.
Technical Paper

Fatigue Failure of Rollers in Crankshaft Fillet Rolling

2004-03-08
2004-01-1498
In this paper, the fatigue failure of the primary roller used in a crankshaft fillet rolling process is investigated by a failure analysis and a two-dimensional finite element analysis. The fillet rolling process is first discussed to introduce the important parameters that influence the fatigue life of the primary roller. The cross sections of failed primary rollers are then examined by an optical microscope and a Scanning Electron Microscope (SEM) to understand the microscopic characteristics of the fatigue failure process. A two-dimensional plane strain finite element analysis is employed to qualitatively investigate the influences of the contact geometry on the contact pressure distribution and the Mises stress distribution near the contact area. Fatigue parameters of the primary rollers are then estimated based on the Findley fatigue theory.
Technical Paper

Fatigue Behaviors of Aluminum 5754-O Spot Friction Welds in Lap-Shear Specimens

2008-04-14
2008-01-1139
Fatigue behaviors of aluminum 5754-O spot friction welds made by a concave tool in lap-shear specimens are investigated based on experimental observations and a fatigue life estimation model. Optical micrographs of the welds before and after failure under quasi-static and cyclic loading conditions are examined. The micrographs indicate that the failure modes of the 5754 spot friction welds under quasi-static and cyclic loading conditions are quite different. The dominant kinked fatigue cracks for the final failures of the welds under cyclic loading conditions are identified. Based on the experimental observations of the paths of the dominant kinked fatigue cracks, a fatigue life estimation model based on the stress intensity factor solutions for finite kinked cracks is adopted to estimate the fatigue lives of the welds.
Technical Paper

Failure of Laser Welds in Aluminum Sheets

2001-03-05
2001-01-0091
In this paper, the formability of AA5754 aluminum laser-welded blanks produced by Nd:YAG laser welding is investigated under biaxial straining conditions. The mechanical behavior of the laser-welded blanks is first examined by uniaxial tensile tests conducted with the weld line perpendicular to the tensile axis. Shear failure in the weld metal is observed in the experiments. Finite element simulations under generalized plane strain conditions are then conducted in order to further understand the effects of weld geometry and strength on the shear failure and formability of these welded blanks. The strain histories of the material elements in the weld metal obtained from finite element computations are finally used in a theoretical failure analysis based on the material imperfection approach to predict the failure strains for the laser-welded blanks under biaxial straining conditions.
Technical Paper

Comparison of Diesel Oxidation Catalyst Performance on an Engine and a Gas Flow Reactor

2007-04-16
2007-01-0231
This paper analyzes and compares reactor and engine behavior of a diesel oxidation catalyst (DOC) in the presence of conventional diesel exhaust and low temperature premixed compression ignition (PCI) diesel exhaust. Surrogate exhaust mixtures of n-undecane (C11H24), ethene (C2H4), CO, O2, H2O, NO and N2 are defined for conventional and PCI combustion and used in the gas flow reactor tests. Both engine and reactor tests use a DOC containing platinum, palladium and a hydrocarbon storage component (zeolite). On both the engine and reactor, the composition of PCI exhaust increases light-off temperature relative to conventional combustion. However, while nominal conditions are similar, the catalyst behaves differently on the two experimental setups. The engine DOC shows higher initial apparent HC conversion efficiencies because the engine exhaust contains a higher fraction of trappable (i.e., high boiling point) HC.
Technical Paper

Automotive Air Conditioning Systems with Absorption Refrigeration

1971-02-01
710037
An automotive absorption air conditioning system would use engine-rejected heat as its energy source. Three possible cycles were studied, based on using water-lithium bromide, ammonia-water, and refrigerant 22-dimethyl ether of tetraethylene glycol as the refrigerant-absorbent pairs. Heat balances were calculated for the cycles and for a comparable vapor compression cycle. Energy input requirements, cooling capacities, coefficients of performance, and pressures and temperatures at various points in the cycle are given. Energy input requirements are compared with test data on the heat rejection from a 390 cu in. displacement production engine.
Technical Paper

An Effective Fatigue Driving Stress for Failure Prediction of Spot Welds Under Cyclic Combined Loading Conditions

2003-03-03
2003-01-0696
An effective fatigue driving stress is proposed to predict the failure of spot welds under cyclic combined loading conditions. The effective fatigue driving stress is obtained based on the Mises yield criterion in terms of the resultant forces and moments in a plastic collapse analysis of spot welds under complex combined loading conditions as discussed in Lin et al. [1]. The effective fatigue driving stress can be used to correlate the fatigue data of spot welds with consideration of the effects of the sheet thickness, nugget diameter and loading conditions. Experimental results for coach-peel and lap-shear specimens under cyclic loading conditions are used to evaluate the applicability of the effective fatigue driving stress. The experimental results for spot welds in both coach-peel and lap-shear specimens are correlated very well based on the effective fatigue driving stress.
Technical Paper

A Fatigue Crack Growth Model for Spot Welds in Square-Cup and Lap-Shear Specimens under Cyclic Loading Conditions

2007-04-16
2007-01-1373
A fatigue crack growth model is adopted in this paper to investigate the fatigue lives of resistance spot welds in square-cup and lap-shear specimens of dual phase, low carbon and high strength steels under cyclic loading conditions. The fatigue crack growth model is based on the global stress intensity factor solutions for main cracks, the local stress intensity factor solutions for kinked cracks as functions of the kink length, the experimentally determined kink angles, and the Paris law for kinked crack propagation. The predicted fatigue lives based on the fatigue crack growth model are then compared with the experimental data. The results indicate that the fatigue life predictions based on the fatigue crack growth model are in agreement with or lower than the experimental results.
X