Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Validation Process of a HEV System Analysis Model: PSAT

2001-03-05
2001-01-0953
Hybrid electric vehicles (HEVs) combine two sources of energy and offer a wide variety of component and drivetrain configurations. However, optimizing the blending of these two energy sources is complex. Argonne National Laboratory (ANL) working with the Partnership for a New Generation of Vehicles (PNGV), maintains hybrid vehicle simulation software, the PNGV System Analysis Toolkit (PSAT). PSAT allows users to choose the best configuration and to optimize the control strategy in simulations. The importance of component models and the complexity involved in setting up optimized control laws require validation of the models and control strategies developed in PSAT. In this paper, we first describe our capability to validate each component model with an actual component test, using test stand facilities. Once each component model has been validated, ANL can perform tests on a whole HEV by using a chassis dynamometer.
Technical Paper

Transient Particulate Emission Measurements in Diesel Engine Exhausts

2003-10-27
2003-01-3155
This paper reports our efforts to develop an instrument, TG-1, to measure particulate emissions from diesel engines in real-time. TG-1 while based on laser-induced incandescence allows measurements at 10 Hz on typical engine exhausts. Using such an instrument, measurements were performed in the exhaust of a 1.7L Mercedes Benz engine coupled to a low-inertia dynamometer. Comparative measurements performed under engine steady state conditions showed the instrument to agree within ±12% of measurements performed with an SMPS. Moreover, the instrument had far better time response and time resolution than a TEOM® 1105. Also, TG-1 appears to surpass the shortcomings of the TEOM instrument, i.e., of yielding negative values under certain engine conditions and, being sensitive to external vibration.
Journal Article

Towards Developing an Unleaded High Octane Test Procedure (RON>100) Using Toluene Standardization Fuels (TSF)

2020-09-15
2020-01-2040
An increase in spark-ignition engine efficiency can be gained by increasing the engine compression ratio, which requires fuels with higher knock resistance. Oxygenated fuel components, such as methanol, ethanol, isopropanol, or iso-butanol, all have a Research Octane Number (RON) higher than 100. The octane numbers (ON) of fuels are rated on the CFR F1/F2 engine by comparing the knock intensity of a sample fuel relative to that of bracketing primary reference fuels (PRF). The PRFs are a binary blend of iso-octane, which is defined to an ON of 100, and n-heptane, which represents an ON of 0. Above 100 ON, the PRF scale continues by adding diluted tetraethyl lead (TEL) to iso-octane. However, TEL is banned from use in commercial gasoline because of its toxicity. The ASTM octane number test methods have a “Fit for Use” test that validate the CFR engine’s compliance with the octane testing method by verifying the defined ON of toluene standardization fuels (TSF).
Journal Article

Time-Resolved X-Ray Radiography of Spark Ignition Plasma

2016-04-05
2016-01-0640
Understanding the short-lived structure of the plasma that forms between the electrodes of a spark plug is crucial to the development of improved ignition models for SI engines. However, measuring the amount of energy deposited in the gas directly and non-intrusively is difficult, due to the short time scales and small length scales involved. The breakdown of the spark gap occurs at nanosecond time scales, followed by an arc phase lasting a few microseconds. Finally, a glow discharge phase occurs over several milliseconds. It is during the arc and glow discharge phases that most of the heat transfer from the plasma to the electrodes and combustion gases occurs. Light emission can be used to measure an average temperature, but micron spatial resolution is required to make localized measurements.
Technical Paper

Three-Dimensional Multi-Scale Simulation for Large-Scale Proton Exchange Membrane Fuel Cell

2019-04-02
2019-01-0381
PEMFC (proton exchange membrane or polymer electrolyte membrane fuel cell) is a potential candidate as a future power source for automobile applications. Water and thermal management is important to PEMFC operation. Numerical models, which describe the transport and electrochemical phenomena occurring in PEMFCs, are important to the water and thermal management of fuel cells. 3D (three-dimensional) multi-scale CFD (computational fluid dynamics) models take into account the real geometry structure and thus are capable of predicting real operation/performance. In this study, a 3D multi-phase CFD model is employed to simulate a large-scale PEMFC (109.93 cm2) under various operating conditions. More specifically, the effects of operating pressure (1.0-4.0 atm) on fuel cell performance and internal water and thermal characteristics are studied in detail under two inlet humidities, 100% and 40%.
Technical Paper

Thermodynamic Properties of Methane and Air, and Propane and Air for Engine Performance Calculations

1967-02-01
670466
This is a continuation of the presentation of thermodynamic properties of selected fuel-air mixtures in chart form, suitable for utilization in engine performance calculations. Methane and propane, representative of natural gas and LPG are the two fuels considered. Using these charts, comparisons are made between the performance to be expected with these gaseous fuels compared to octane, as representative of gasoline. Reduced engine power is predicted and this is confirmed by experience of other investigators.
Journal Article

Thermodynamic Analysis of a Novel Combined Power and Cooling Cycle Driven by the Exhaust Heat Form a Diesel Engine

2013-04-08
2013-01-0858
A novel combined power and cooling cycle based on the Organic Rankine Cycle (ORC) and the Compression Refrigeration Cycle (CRC) is proposed. The cycle can be driven by the exhaust heat from a diesel engine. In this combined cycle, ORC will translate the exhaust heat into power, and drive the compressor of CRC. The prime advantage of the combined cycle is that both the ORC and CRC are trans-critical cycles, and using CO₂ as working fluid. Natural, cheap, environmentally friendly, nontoxic and good heat transfer properties are some advantages of CO₂ as working fluid. In this paper, besides the basic combined cycle (ORC-CRC), another three novel cycles: ORC-CRC with an expander (ORC-CRCE), ORC with an internal heat exchanger as heat accumulator combined with CRC (ORCI-CRC), ORCI-CRCE, are analyzed and compared.
Technical Paper

Thermal Efficiency Enhancement of a Turbocharged Diesel Engine Dedicated for Hybrid Commercial Vehicle Application

2022-10-28
2022-01-7053
Hybrid powertrain has been proven to be an effective fuel-saving technology in commercial vehicles, but many hybrid commercial vehicles still use conventional diesel engines, resulting in limited fuel savings. The main purpose of this study is to enhance the thermal efficiency of a dedicated hybrid diesel engine focusing on the characteristic operating conditions. Via fundamental thermodynamics process analysis of internal combustion engine, steel piston with high compression ratio, air system involving two-stage turbocharger(2TC) with an intercooler, and late intake valve closing(IVC) timing are proposed to improve the thermal efficiency of the engine. Experimental results show that high compression ratio and lower thermal conductivity of the combustion chamber surface lead to lower heat release rates, requiring optimization of piston profile to accelerate the mixing rate. Besides, high compression ratio also leads to higher mechanical losses.
Technical Paper

The Simulation of Single Cylinder Intake and Exhaust Systems

1967-02-01
670478
A detailed description of a numerical method for computing unsteady flows in engine intake and exhaust systems is given. The calculations include the effects of heat transfer and friction. The inclusion of such calculations in a mathematically simulated engine cycle is discussed and results shown for several systems. In particular, the effects of bell-mouth versus plain pipe terminations and the effects of a finite surge tank are calculated. Experimental data on the effect of heat transfer from the back of the intake valve on wave damping are given and show the effect to be negligible. Experimental data on wave damping during the valve closed period and on the temperature rise of the air near the valve are also given.
Technical Paper

The Radiant and Convective Components of Diesel Engine Heat Transfer

1963-01-01
630148
The ratio of two temperature gradients across the combustion-chamber wall in a diesel engine is used to provide a heat flow ratio showing the radiant heat transfer as a per cent of local total heat transfer. The temperature gradients were obtained with a thermocouple junction on each side of the combustion-chamber wall. The first temperature gradient was obtained by covering the thermocouple at the cylinder gas-wall interface with a thin sapphire window, while the second was obtained without the window. Results show that the time-average radiant heat transfer is of significant magnitude in a diesel engine, and is probably even more significant in heat transfer during combustion and expansion.
Journal Article

The Measured Impact of Vehicle Mass on Road Load Forces and Energy Consumption for a BEV, HEV, and ICE Vehicle

2013-04-08
2013-01-1457
The U.S. Department of Energy's Office of Energy Efficiency & Renewable Energy initiated a study that conducted coastdown testing and chassis dynamometer testing of three vehicles, each at multiple test weights, in an effort to determine the impact of a vehicle's mass on road load force and energy consumption. The testing and analysis also investigated the sensitivity of the vehicle's powertrain architecture (i.e., conventional internal combustion powertrain, hybrid electric, or all-electric) on the magnitude of the impact of vehicle mass. The three vehicles used in testing are a 2012 Ford Fusion V6, a 2012 Ford Fusion Hybrid, and a 2011 Nissan Leaf. Testing included coastdown testing on a test track to determine the drag forces and road load at each test weight for each vehicle. Many quality measures were used to ensure only mass variations impact the road load measurements.
Journal Article

The Effects of EGR and Injection Timing on the Engine Combustion and Emission Performances Fueled by Butanol-Diesel Blends

2012-04-01
2011-01-2473
The combustion and emission characteristics of a diesel engine running on butanol-diesel blends were investigated in this study. The blending ratio of n-butanol to diesel was varied from 0 to 40 vol% using an increment of 10 vol%, and each blend was tested on a 2.7 L V6 common rail direction injection diesel engine equipped with an EGR system. The test was carried out under two engine loads at a constant engine speed, using various combinations of EGR ratios and injection timings. Test results indicate that n-butanol addition to engine fuel is able to substantially decrease soot emission from raw exhaust gas, while the change in NOx emissions varies depending on the n-butanol content and engine operating conditions. Increasing EGR ratio and retarding injection timing are effective approaches to reduce NOx emissions from combustion of n-butanol-diesel blends.
Technical Paper

The Effect of Injection Pressure on Air Entrainment into Transient Diesel Sprays

1999-03-01
1999-01-0523
The objective of this research was to investigate the effect of injection pressure on air entrainment into transient diesel sprays. The main application of interest was the direct injection diesel engine. Particle Image Velocimetry was used to make measurements of the air entrainment velocities into a spray plume as a function of time and space. A hydraulically actuated, electronically controlled unit injector (HEUI) system was used to supply the fuel into a pressurized spray chamber. The gas chamber density was maintained at 27 kg/m3. The injection pressures that were studied in this current research project were 117.6 MPa and 132.3 MPa. For different injection pressures, during the initial two-thirds of the spray plume there was little difference in the velocities normal to the spray surface. For the last third of the spray plume, the normal velocities were 125% higher for the high injection pressure case.
Video

Test Results of Plug-In Vehicles According to SAE Standard Testing Practices

2012-03-27
Over the past several years, new recommended practices for testing plug-in vehicles have been developed by SAE standards committees. At first only proprietary or prototype vehicles were available to validate new procedures. However, with the recent availability of Chevy Volt and Nissan Leaf, these test procedures were put to the test in Argonne�s National Laboratory�s dynamometer test facility. Procedures for the Volt were according to the SAE J1711 procedures. The Leaf was tested according to procedures still under development in the SAE J1634 task force. Identified were aspects of the tests that were successful and areas where more development is needed. As described in SAE J2841, the Volt results were analyzed using a �utility factor� to estimate in-use expectations of electric-only miles.
Journal Article

Test Procedure Development for “Blended Type” Plug-In Hybrid Vehicles

2008-04-14
2008-01-0457
Several plug-in hybrid electric vehicles (PHEVs) have recently been made available by conversion companies for laboratory testing. The viability of the technology must be evaluated by dynamometer benchmark testing, but because the technology is so new, existing and new test methods must first be investigated. Converted Gen 2 Toyota Prius vehicles from Hymotion, EnergyCS, and Hybrids Plus were tested at Argonne's dynamometer facility according to general testing concepts. These vehicles all share basic attributes - all are blended type PHEVs, all use Lithium battery technology, and all deplete charge in a similar fashion (although at different rates). In a time span of one year, lessons learned from one vehicle were carried over into the next test vehicle. A minimum test method was formulated that is well suited for all these vehicles. The method was validated with two vehicles of varying charge-depleting range.
Technical Paper

Tahoe HEV Model Development in PSAT

2009-04-20
2009-01-1307
Argonne National Laboratory (Argonne) and Idaho National Laboratory (INL), working with the FreedomCAR and Fuels Partnership, lead activities in vehicle dynamometer and fleet testing as well as in modeling activities. By using Argonne’s Advanced Powertrain Research Facility (APRF), the General Motors (GM) Tahoe 2-mode was instrumented and tested in the 4-wheel-drive test facility. Measurements included both sensors and controller area network (CAN) messages. In this paper, we describe the vehicle instrumentation as well as the test results. On the basis of the analysis performed, we discuss the vehicle model developed in Argonne’s vehicle simulation tool, the Powertrain System Analysis Toolkit (PSAT), and its comparison with test data. Finally, on-road vehicle data, performed by INL, is discussed and compared with the dynamometer results.
Technical Paper

Surface Functional Groups and Graphitization Degree of Soot in the Sooting History of Methane Premixed Flame

2017-03-28
2017-01-1003
The evolution of surface functional groups (SFGs) and the graphitization degree of soot generated in premixed methane flames are studied and the correlation between them is discussed. Test soot samples were obtained from an optimized thermophoretic sampling system and probe sampling system. The SFGs of soot were determined by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) after removing the soluble impurities from the soot samples, while the graphitization degree of soot was characterized by Raman spectrum and electron energy loss spectroscopy (EELS). The results reveal that the number of aliphatic C-H groups and C=O groups shows an initial increase and then decrease in the sooting history. The large amount of aliphatic C-H groups and small amount of aromatic C-H groups in the early stage of the soot mass growth process indicate that aliphatic C-H groups make a major contribution to the early stage of soot mass growth.
Technical Paper

Study on the Characteristics of Different Intake Port Structures in Scavenging and Combustion Processes on a Two-Stroke Poppet Valve Diesel Engine

2020-04-14
2020-01-0486
Two-stroke engines have to face the problems of insufficient charge for short intake time and the loss of intake air caused by long valve overlap. In order to promote the power of a two-stroke poppet valve diesel engine, measures are taken to help optimize intake port structure. In this work, the scavenging and combustion processes of three common types of intake ports including horizontal intake port (HIP), combined swirl intake port (CSIP) and reversed tumble intake port (RTIP) were studied and their characteristics are summarized based on three-dimensional simulation. Results show that the RTIP has better performance in scavenging process for larger intake air trapped in the cylinder. Its scavenging efficiency reaches 84.7%, which is 1.7% higher than the HIP and the trapping ratio of the RTIP reaches 72.3% due to less short-circuiting loss, 11.2% higher than the HIP.
Technical Paper

Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine

2017-03-28
2017-01-0576
Wall temperature in GDI engine is influenced by both water jacket and gas heat source. In turn, wall temperature affects evaporation and mixing characteristics of impingement spray as well as combustion process and emissions. Therefore, in order to accurately simulate combustion process, accurate wall temperature is essential, which can be obtained by conjugate heat transfer (CHT) and piston heat transfer (PHT) models based on mapping combustion results. This CHT model considers temporal interaction between solid parts and cooling water. This paper presents an integrated methodology to reliably predict in-cylinder combustion process and temperature field of a 2.0L GDI engine which includes engine head/block/gasket and water jacket components. A two-way coupling numerical procedure on the basis of this integrated methodology is as follows.
Technical Paper

Study on Hydrodynamic Characteristics of Fuel Droplet Impact on Oil Film

2020-04-14
2020-01-1429
In order to understand the spray impinging the lubricant oil on the piston or cylinder wall in GDI engine, the Laser Induced Fluorescence (LIF) method was used to observe the phenomenon of the fuel droplets impact oil film and distinguish the fuel and oil during the impingement. The experimental results show that the hydrodynamic characteristics of impingement affected by the oil viscosity, droplets’ Weber number, oil film thickness. Crown formed after impingement. The morphology after impingement was categorized into: rings, stable crown, splash and prompt splash. Low oil film dynamic viscosity, high Weber number or thin oil film can facilitate splash. Splash droplets consist of fuel and oil, and the oil is the main component of splash droplets and crown. The empirical formula of critical We number (We) is fitted. High dimensionless oil film thickness or low oil film dynamic viscosity can increase the proportion of fuel in the crown.
X