Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Path Planning Method for Perpendicular Parking Based on Vehicle Kinematics Model Using MPC Optimization

2022-03-29
2022-01-0085
In recent years, intelligent driving technology is being extensively studied. This paper proposes a path planning method for perpendicular parking based on vehicle kinematics model using MPC optimization, which aims to solve the perpendicular parking task. Firstly, in the case of any initial position and orientation of the vehicle, judging whether the vehicle can be parked at one step according to the location of the parking place and the width of the lane, and then calculating the starting position for parking, and use the Bezier curve to connect the initial position and the starting position. Secondly, reference parking path is calculated according to the collision constraints of the parking space. Finally, because the parking path based on the vehicle kinematics model is composed of circle arcs and straight lines, the curvature of the path is discontinuous. The reference parking path is optimized using Model Predictive Control (MPC).
Technical Paper

Parking Slots Allocation for Multiple Autonomous Valet Parking Vehicles

2022-03-29
2022-01-0148
Although autonomous valet parking technology can replace the driver to complete the parking operation, it is easy to cause traffic chaos in the case of lacking scheduling for multiple parking agents, especially when multiple cars compete for the same parking slot at the same time. Therefore, in order to ensure orderly traffic and parking safety, it is necessary to allocate parking slots reasonably for multiple autonomous valet parking vehicles. The parking slots allocation model is built as an optimal problem with constraints. Both parking mileage cost and parking difficult cost are considering at the objective function in the optimization problem. There are three types of constraints. The first is the capacity limit of a single parking slot, the second is the space limit occupied by a single vehicle, and the third is the total capacity limit of the parking lot. After establishing parking slots allocation model, the immune algorithm is coded to solve the problem.
Technical Paper

Parking Planning with Genetic Algorithm for Multiple Autonomous Vehicles

2022-03-29
2022-01-0087
The past decade has witnessed the rapid development of autonomous parking technology, since it has promising capacity to improve traffic efficiency and reduce the burden on drivers. However, it is prone to the trap of self-centeredness when each vehicle is automated parking in isolation. And it is easy to cause traffic congestion and even chaos when multiple autonomous vehicles require of parking into the same lot. In order to address the multiple vehicle parking problem, we propose a parking planning method with genetic algorithm. Firstly, an optimal mathematic model is established to describe the multiple autonomous vehicle parking problem. Secondly, a genetic algorithm is designed to solve the optimization problem. Thirdly, illustrative examples are developed to verify the parking planner. The performance of the present method indicates its competence in addressing parking multiple autonomous vehicles problem.
Technical Paper

IMM-KF Algorithm for Multitarget Tracking of On-Road Vehicle

2020-04-14
2020-01-0117
Tracking vehicle trajectories is essential for autonomous vehicles and advanced driver-assistance systems to understand traffic environment and evaluate collision risk. In order to reduce the position deviation and fluctuation of tracking on-road vehicle by millimeter-wave radar (MMWR), an interactive multi-model Kalman filter (IMM-KF) tracking algorithm including data association and track management is proposed. In general, it is difficult to model the target vehicle accurately due to lack of vehicle kinematics parameters, like wheel base, uncertainty of driving behavior and limitation of sensor’s field of view. To handle the uncertainty problem, an interacting multiple model (IMM) approach using Kalman filters is employed to estimate multitarget’s states. Then the compensation of radar ego motion is achieved, since the original measurement is under the radar polar coordinate system.
Technical Paper

Distributed Drive Electric Vehicle Longitudinal Velocity Estimation with Adaptive Kalman Filter: Theory and Experiment

2019-04-02
2019-01-0439
Velocity is one of the most important inputs of active safety systems such as ABS, TCS, ESC, ACC, AEB et al. In a distributed drive electric vehicle equipped with four in-wheel motors, velocity is hard to obtain due to all-wheel drive, especially in wheel slipping conditions. This paper focus on longitudinal velocity estimation of the distributed drive electric vehicle. Firstly, a basic longitudinal velocity estimation method is built based on a typical Kalman filter, where four wheel speeds obtained by wheel speed sensors constitute an observation variable and the longitudinal acceleration measured by an inertia moment unit is chosen as input variable. In simulations, the typical Kalman filter show good results when no wheel slips; when one or more wheels slip, the typical Kalman filter with constant covariance matrices does not work well. Therefore, a gain matrix adjusting Kalman filter which can detect the wheel slip and cope with that is proposed.
X