Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Vibration and Noise Analysis of Engine Variable Displacement Oil Pump

2017-03-28
2017-01-0446
Oil pump is a critical part of engine lubrication system. The performance and efficiency of oil pump are greatly affected by vibration and noise, which would lead to the pump service life decreasing and pump body easily wearing. Hence the vibration and noise of oil pump is of great importance to study. In this paper, a FEA model of the variable displacement oil pump(VDOP) was established to carry on the modal and noise analysis, while the geometric structure was optimized with test verification. The modal analysis of VDOP was carried out by ABAQUS software, the 3-D unsteady flow field in VDOP was simulated by Pumplinx software, and the sound field was analyzed by ACTRAN acoustic module. Using a special oil pump test bench combined with B&K PULSE vibration and noise test equipment, the NVH and comprehensive performance experiment of the VDOP were carried out here.
Technical Paper

Vibration Analysis of Series-parallel Hybrid Powertrain System under Typical Working Condition and Modes

2018-04-03
2018-01-1291
Powertrain system of series-parallel hybrid vehicle contains multiple excitation sources like engine, motor and generator. The reduction of noise and vibration is quite difficult during multiplex working modes or the switch of modes. Aiming at Series-parallel hybrid powertrain system which contains engine, motor and planetary gear subsystems, this paper considered a typical working condition which is based on the power control strategy and established the torsional vibration mechanical model of hybrid powertrain system. The inherent characteristics and transient vibration response of the electric mode, hybrid mode and parking charging mode were studied and it was discovered that the repetitive frequency of the powertrain system under the three working modes is the same which is only related to inertia and meshing stiffness of planetary gear system. The non-repetitive frequency and corresponding vibration modes under the electric mode and parking charging mode are both close.
Research Report

Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles

2022-09-26
EPR2022020
Fuel cell electric vehicles (FCEVs) require multiple components to operate properly, and the fuel cell stack—the source of power—is one of the most important components. While the number of enterprises manufacturing and selling fuel cell stacks is increasing globaly year after year, the residual challenges of core components and technologies still need to be resolved in order to keep pace with the development of lithium-ion batteries (i.e., its primary competitor). Additionally, many production and distribution standards are seen as unsettled. These barriers make large-scale commercialization an issue. Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles explores the opportunities and challenges within the PEMFC industry. With the help of expert contributors, a critical overview of fuel cells and the FCEV industry is presented, and core technology, applications, costs, and trends are analyzed.
Technical Paper

Unsteady Performance Simulation Analysis of a Waste-Gated Turbocharger Turbine under Different Valve Opening Conditions

2017-10-08
2017-01-2417
An electronic waste-gated turbocharger for automotive application can accurately control the boost pressure and effectively reduce turbo-lag. It can improve the transient responsive performance of engine and the acceleration performance of vehicle, which makes vehicle have a better adaptation to the complex traffic environment. A detailed analysis of aerodynamic working principle of electronic wastegate is the foundation for designing the control strategy of electronic wastegate. Putting turbine with electronic wastegate under unsteady condition that simulates the pulse exhaust gas of engine and studying influences of different valve opening on the performance of turbine has the practical value. This paper sets fixed and periodical unsteady conditions and adopts numerical methods to explore the performance of turbine in twin-entry turbocharger and the flow loss of bypass. Steady simulation structure is given for reference.
Technical Paper

Transient Characteristics of Combustion and Emissions during Start up at Higher Cranking Speed in a PFI Engine for HEV Application

2008-10-06
2008-01-2420
The transient characteristics of combustion and emissions during the engine start up at different higher cranking speeds for hybrid electric vehicle (HEV) applications were presented in this paper. Cycle-by-cycle analysis was done for each start up case. Intake air mass during the first several cycles decrease as the engine was cranked at higher speed. Ignition timing is delayed with higher cranking speed, which leads to an increase of exhaust temperature. For various start up cases, similar quantity of fuel is injected at the first cycle, but the ignition timing is significantly delayed to meet the acceleration requirement when cranking speed enhanced. Because of the deterioration of intake charge, the air-fuel mixture is over-enriched in the first several cycles for the cases at higher cranking speed. With cranking speed is increased, the in-cylinder residual gas fraction rises, which leads to poor combustion and decrease of mass fraction of burned fuel.
Technical Paper

Thermodynamic and Chemical Analysis of the Effect of Working Substances on the Argon Power Cycle

2021-04-06
2021-01-0447
The Argon Power Cycle engine is a novel concept for high efficiency and zero emission through the replacement of N2 by Ar. However, the higher in-cylinder temperature and pressure as by-products cause heavier knock. The anti-knock strategies, such as reducing compression ratio and retarding ignition time, offset the efficiency increased by the Argon Power Cycle. Therefore, knock control becomes the most urgent task for the Argon Power Cycle engine development. The anti-knock methods, including fuel replacement, ultra-lean combustion, high dilution combustion, and water injection, were considered. The simulated ignition delay times were used to evaluate the probability of knock. The Otto cycle, combined with chemical equilibrium, was utilized to confirm the effect on the thermal conversion efficiency and each in-cylinder thermodynamic state parameter. The results show that the ignition delay times increase by a factor of two when the Ar dilution ratio increases from 79% to 95%.
Technical Paper

Thermal Model of High-Power Lithium Ion Battery Under Freezing Operation

2018-04-03
2018-01-0445
Lithium ion battery is considered as one of the most possible energy storage equipment for new energy vehicles (EV, HEV, etc.) because of the advantages of long cycle life, high power density and low self-discharge rate. However, under freezing condition high power battery suffers of significant performances losses. For example, they would suffer from significant power capability losses and poor rate performance, which would restrict the availability to delivery or to gain of high current in transient conditions. To evaluate those performance drawbacks and to make an efficient design, good mathematical models are required for system simulation especially for battery thermal management. In this paper, a three-dimensional homogenization thermal model of a 20 Ah prismatic lithium ion battery with LiFePO4 (LFP) cathode is described.
Technical Paper

Thermal Management of Power Batteries for Electric Vehicles Using Phase Change Materials: A Review

2016-04-05
2016-01-1204
As one of the most crucial components in electric vehicles, power batteries generate abundant heat during charging and discharging processes. Thermal management system (TMS), which is designed to keep the battery cells within an optimum temperature range and to maintain an even temperature distribution from cell to cell, is vital for the high efficiency, long calendar life and reliable safety of these power batteries. With the desirable features of low system complexity, light weight, high energy efficiency and good battery thermal uniformity, thermal management using composite phase change materials (PCMs) has drawn great attention in the past fifteen years. In the hope of supplying helpful guidelines for the design of the PCM-based TMSs, this work begins with the summarization of the most commonly applied heat transfer enhancement methods (i.e., the use of thermally conductive particles, metal fin, expanded graphite matrix and metal foam) for PCMs by different researchers.
Technical Paper

Theoretical and Practical Mechanisms on Lowering Exhaust Emission Levels for Diverse Types of Spark Ignition Engines

2008-06-23
2008-01-1545
The exhaust aftertreatment strategy is one of the most fundamental aspects of spark ignition engine technologies. For various types of engines (e.g., carburetor engine, PFI engine and GDI engine), measuring, purifying, modeling, and control strategies regarding the exhaust aftertreatment systems vary significantly. The primary goal of exhaust aftetreatment systems is to reduce the exhaust emission levels of NOx, HC and CO as well as to lower combustion soot. In general, there is a tradeoff among different engine performance aspects. The exhaust catalytic systems, such as the three way catalyst (TWC) and lean NOx trap (LNT) converters, can be applied together with the development of other engine technologies (e.g., variable valve timing, cold start). With respect to engine soot, some advanced diagnosing techniques are essential to obtain thorough investigation of exhaust emission mechanisms.
Technical Paper

The Study on Fatigue Test of Cab Assembly Based on 4-Channel Road Simulation Bench

2017-03-28
2017-01-0328
The multi-body dynamics simulation and physical iteration were carried out based on the 4-channel road simulation bench, the solution of fatigue test bench which was suitable for cab with frame and suspension was designed. Large load and displacement above the suspension can be loaded on the test bench, and the same weak position of cab exposed on the road test can be assessed well on the fatigue test bench. The effectiveness of the bench test solution was verified though comparative study. And it has important reference for the same type of cab assembly with suspension in the fatigue bench test. According to the durability specifications of cab assembly, a multi-body dynamics model with a satisfactory accuracy was built. And the fixture check and virtual iteration analysis were used to verify the effectiveness of the solution. According to the road load signal analysis and multi-body dynamics analysis results, the test bench with linear guide and spherical joint was built.
Technical Paper

The Social Economical Benefit Estimation by HEVs Application-Shanghai Case Study

2008-06-23
2008-01-1565
In this paper, a case study of Shanghai HEVs application and its effects on the social and environmental benefits are presented based on the multi views on the different aspects, such as, not only for the fuel consumption saving, but also emissions reduction and health effect, agriculture loss and cleaning cost. The results show that the potential benefits for the society from HEVs application are markedly with the increase of the ratio of HEV in the population of vehicle. Based on this, the policy to promote the HEV purchased by consumers is very important at the beginning of HEV into market.
Technical Paper

The Nonlinear Characteristics Impact of Multi-Staged Stiffness Clutch Damper on the Vehicle Creeping

2016-04-05
2016-01-0431
The nonlinear characteristics impact of multi-staged stiffness clutch damper on the vehicle creeping is investigated by using the lumped-parameter modeling method as a certain mass-production passenger sedan is taken as the research subject. Firstly, a quasi-transient engine model of an inline four-cylinder and four-stroke engine, based on measured data of cylinder gas pressure versus crankshaft angle, is derived. Effective output torque is acquired and as the input excitation to the driveline system. Secondly, a 12-DOF (Degree of Freedom) nonlinear and branched powertrain system and vehicle longitudinal dynamics model is established. The differential mechanism characteristics and dynamic tire property based on the LuGre tire model are considered. Then, for a traditional two-staged stiffness clutch damper in consideration of hysteresis characteristics, vehicle powertrain system responses in both the time and frequency domain are obtained.
Technical Paper

The Investigation of Self-Balanced Property and Vibration on the Particular Crankshaft System for an Opposed Piston Engine

2016-06-15
2016-01-1768
For an in-line diesel engine with four cylinder operating in four-stroke mode, the second-order reciprocating inertia forces generally cannot be well balanced with direct approach. The unbalanced second-order inertia forces are the main reason to cause vibration and noise in a diesel engine within low frequency range. The more superior tone quality for modern diesel engine has been expected even for bus application all the time, and there are tougher requirements for truck noise in developed countries, i.e. in Europe and USA. In present research a unique crankshaft system configuration was proposed, which including opposed piston, inner and outer connecting rod, and crankshaft but running in two-stroke mode, to eliminate the second-order inertia force considerably rather than by adding an extra balance shaft mechanism.
Technical Paper

The Emission of a Diesel Engine in Different Coolant Temperature during Cold Start at High Altitude

2019-04-02
2019-01-0730
Emissions of diesel engine have been received much more attention since the Volkswagen Emission Scandal. The Euro VI emission standard has already included cold start emissions in the legislative emission driving cycles which is one of the hardest part of emission control. High altitude performance is also considered in the latest regulations which will be stricter in the future. Heating the coolant is one of the most common method to improve the cold start performance. But researches focus on the emission of a diesel engine in different coolant temperature at high altitude which up to 4500m have not been seen. The present research investigated the effect of coolant temperature on performance and exhaust emissions (gaseous and particulate emissions) during the cold start of a diesel engine. A plateau simulation system controlled the inlet and exhaust pressure to create altitude environments from 0m to 4500m, and the coolant temperature was controlled from 20°C to 60°C.
Technical Paper

The Dynamic Electromagnetic Distribution and Electromagnetic Interference Suppression of Smart Electric Vehicle

2019-04-02
2019-01-1061
Smart electric vehicles need more accurate and more timely information as well as control than traditional vehicles, which depends on great environmental sensors such as millimeter-wave radar. In this way, the electromagnetic compatibility of whole vehicle would confront more serious challenges because of its high frequency range. Thus, this paper studies the electromagnetic distribution and electromagnetic interference suppression of smart electric vehicles with the followings. Firstly, the millimeter wave radar is modeled and optimized. Micro strip patch antenna, with small size, light mass and low cost, is used as array element of antenna. Millimeter wave radar is modeled and simulated step by step from array element to line array to planar matrix. Then the Cross Shape - Uniplanar Compact - Electromagnetic Band Gap (CS-UC-EBG) structure is deployed to optimize its electromagnetic characteristics, based on finite time domain difference model theory.
Journal Article

The Control Strategy for 4WD Hybrid Vehicle Based on Wavelet Transform

2021-04-06
2021-01-0785
In this paper, in order to avoid the frequent switching of engine operating points and improve the fuel economy during driving, this paper proposes a control strategy for the 4-wheel drive (4WD) hybrid vehicle based on wavelet transform. First of all, the system configuration and the original control strategy of the 4WD hybrid vehicle were introduced and analyzed, which summarized the shortcomings of this control strategy. Then, based on the analyze of the original control strategy, the wavelet transform was used to overcome its weaknesses. By taking advantage over the superiority of the wavelet transform method in multi signal disposition, the demand power of vehicle was decomposed into the stable drive power and the instantaneous response power, which were distributed to engine and electric motor respectively. This process was carried out under different driving modes.
Technical Paper

The Aging Law of Low Temperature Charging of Lithium-Ion Battery

2019-04-02
2019-01-1204
With the rise of new energy vehicles, lithium-ion batteries have been widely used. However, the safety, cruising range and practicality of electric vehicles are still major obstacles to their development. Among them, the low-temperature performance of electric vehicles is receiving more and more attention. Lithium-ion batteries have poor low-temperature performance. At low temperatures, not only the charging efficiency is lowered, but also the energy that can be flushed is correspondingly reduced, thereby resulting in a decrease in capacity and an increase in aging. At present, the mechanism and influence factors of battery discharge aging have been studied relatively well, but there are few researches on low temperature charging aging of batteries.
Technical Paper

Temperature Difference Control Strategy and Flow Field Uniformity Analysis of Ni-Mh Power Battery Package

2012-09-24
2012-01-2018
The nonuniformity property of the temperature field distribution will not only affect on the battery charging and discharging performance but also its lifetime. In this paper the elementary structural design is implemented for Ni-Mh battery package and the corresponding test platform is constructed from the point of view of temperature difference control strategy, the test results show that the present structural design schemes can effectively restrain temperature difference enlargement among the battery stacks. Through the application of adopting the flow field uniformity method to control temperature difference, and flow field optimization inside the battery package, it is found that the flow field velocity change quantity ΔV is gradually reduced as the increase of the afflux hood angle Ak and air vent width Da, and the difference of battery temperature is relatively lower, which denoting that the corresponding relationship can be created based on test data.
Technical Paper

Subjective and Objective Evaluation of APU Start-Stop NVH for a Range-Extended Electric Vehicle

2015-03-10
2015-01-0047
In recent years, electric vehicle and hybrid vehicle are either on the market or under intensive research and development (R&D). Since the concept of auxiliary power unit (APU) was brought into the automotive industry, the range-extended electric vehicle (ReEV) has become the favor of the worldwide manufacturers. Normally, the APU starts and stops more frequently in response to the control strategy compared with traditional vehicles, which will affect the ride comfort of passengers. Thus, APU start-stop NVH refinement is an important aspect of ReEV R&D. In this paper, a subjective evaluation on a ReEV was performed to quickly diagnose NVH issues firstly. Based on subjective results, the NVH experiment in a semi-anechoic room was carried out to troubleshoot these issues. The accelerations of the APU mounts, the seat track and the steering wheel as well as interior noise level were acquired and analyzed.
Technical Paper

Study on the Diffusion Law of Electric Vehicle Sharing in Complex Social Network Environment

2023-04-11
2023-01-0889
Electric vehicle sharing (EVS) can alleviate traffic congestion and reduce emissions. However, the poor user experience and lack of word-of-mouth effect lead to the low utilization rate of EVS in China. Based on the demand and pain points of EVS, this paper concentrates on travel mode choice behavior of consumers under social networks and establishes an agent-based model for EVS diffusion. The results show that: (1) Social networks can promote the diffusion of EVS and the number of opinion leaders and the number of fans of opinion leaders play an important role. (2) Consumers are more sensitive to travel costs than non-travel time now, but with the improvement of demand for travel experience, consumers are more concerned with non-travel time. (3) The non-travel time of EVS needs to be reduced to 9, 8 and 7 minutes respectively to retain users when the travel cost increases to 0.7, 0.8 and 0.9 Yuan/minute.
X