Refine Your Search

Topic

Author

Search Results

Technical Paper

Vibration Reduction Applying Skew Phenomena of Needle Roller Bearings in Brake Actuators

2006-04-03
2006-01-0881
Generally, automobiles have many performance requirements for comfort, of which noise, vibration and harshness are very important. Toyota Motor Corporation equipped several 2003 models with the second-generation Electronically Controlled Brake system (ECB2). These ECB2 actuator units adopted a new structure that reduced pumping noise by controlling the skew phenomena of needle roller bearings. Normally, needle roller bearings are advantageous over other bearings in cases where a large force is loaded on bearings, because the contact areas can be made larger. However, a thrust force arises from skew phenomena because of minute clearances among the component parts of needle roller bearings. As a result, axial vibration of the bearing shaft sometimes occurs due to the thrust force. This paper explains how the thrust force generated from the skew phenomena of needle roller bearings occasionally affects the pumping vibration level of equipped machinery such as the brake actuator unit.
Journal Article

Thermal Analysis of Traction Contact Area Using a Thin-film Temperature Sensor

2013-04-08
2013-01-0368
The purpose of this paper is to construct the thermal analysis model by measuring and estimating the temperature at the traction contact area. For measurement of temperature, we have used a thin-film temperature sensor. For estimation of temperature, we have composed the thermal analysis model. The thin-film temperature sensor was formed on the contact surface using a spattering device. The sensor is constituted of three layers (sensor layer, insulation layer and intermediate layer). Dimensions of the sensor were sufficiently smaller than the traction contact area. The sensor featured high specific pressure capacity and high speed responsiveness. The thermal analysis model was mainly composed of three equations: Carslaw & Jaeger equation, Rashid & Seireg equation and heat transfer equation of shear heating in oil film. The heat transfer equation involved two models (local shear heating model at middle plane, homogeneous shear heating model).
Technical Paper

The Motor Control Technologies for High-Power Hybrid System

2005-04-11
2005-01-0271
The Rx400h, which was put on the market in 2005, realized overwhelming power performance with the adoption of a high-voltage system, high-power output motor, and 3-motor type 4WD. Toyota has been working on a solution to increase the output power of the motor, i.e., the development of system stabilization technology. This paper introduces high-speed power balance control, which keeps the balance of power constant regardless of rapid changes in the number of motor rotations resulting from slipping tires or other factors, along with sensor error compensation control, which suppresses cyclic power fluctuation resulting from errors in the position sensor of the motor.
Technical Paper

The Advanced Sensor Fusion Algorithm for Pre-Crash Safety System

2007-04-16
2007-01-0402
An obstacle recognition algorithm for the Pre-Crash Safety system has been newly developed with a stereo vision system and a millimeter wave radar with additional functions. This algorithm uses the merits of both the millimeter wave radar and the stereo vision system, and has two main features. One feature utilizes the merits of the stereo vision system detection with the detection results from the millimeter wave radar allowing for a more detailed horizontal position and width of the obstacle. This enables the equipment to operate at an earlier stage according to how well the relationship between the vehicle and the obstacle is understood. Another feature fuses detection from the millimeter wave radar and the stereo vision system. This system has succeeded in enhancing the detection performance of pedestrians who have been more difficult to detect than reflective objects such as cars.
Technical Paper

Surge Detection Using Knock Sensors in a Heavy Duty Diesel Engine

2017-09-04
2017-24-0050
Improving turbocharger performance to increase engine efficiency has the potential to help meet current and upcoming exhaust legislation. One limiting factor is compressor surge, an air flow instability phenomenon capable of causing severe vibration and noise. To avoid surge, the turbocharger is operated with a safety margin (surge margin) which, as well as avoiding surge in steady state operation, unfortunately also lowers engine performance. This paper investigates the possibility of detecting compressor surge with a conventional engine knock sensor. It further recommends a surge detection algorithm based on their signals during transient engine operation. Three knock sensors were mounted on the turbocharger and placed along the axes of three dimensions of movement. The engine was operated in load steps starting from steady state. The steady state points of operation covered the vital parts of the engine speed and load range.
Technical Paper

Stereo Vision System for Advanced Vehicle Safety System

2007-04-16
2007-01-0405
In this paper, we will introduce a stereo vision system developed as a sensor for a vehicle's front monitor. This system consists of three parts; namely, a stereo camera that collects video images of the forward view of the vehicle, a stereo ECU that processes its output image, and a near-infrared floodlight for illuminating the front at night. We were able to develop an obstacle detection function for the Pre-Crash Safety System and also a traffic lane detection function for a Lane-Keeping Assist System. Especially in regard to the obstacle detection function, we were able to achieve real-time processing of the disparity image calculations that had formerly required long processing times by using two types of recently developed LSIs.
Technical Paper

Sensor Fusion for Liquid Level Detection in Tanks Mounted on a Heavy Duty vehicle

2013-10-14
2013-01-2495
The upcoming European legislation for heavy duty vehicles, EuVI, includes rules on monitoring of urea consumption and urea tank volume. These new rules put new demands on the level sensing system monitoring the urea tank. The normal vehicle mounted liquid level sensing system today consists of a single, more or less vertically placed, sensor. When the vehicle is tilted the level of the fluid at the sensor position normally changes. This results in a measurement error in the calculated volume, as the volume is calculated based only on the information from the level sensor. The presented modeling studies investigate the feasibility of using sensor fusion to improve the accuracy of liquid volume estimation on a heavy duty truck. In the first study, the signals from multiple level sensors located in various liquid containing tanks on the truck are fused.
Technical Paper

Reduction of Longitudinal Vehicle Vibration Using In-Wheel Motors

2016-04-05
2016-01-1668
This study analyzed the longitudinal vibration of a vehicle body and unsprung mass. Calculations and tests verified that longitudinal vibration can be reduced using in-wheel motors, which generate torque very quickly. Despite increasing demand for measures to enhance ride comfort considering longitudinal vibration, this type of vibration cannot be absorbed or controlled using a conventional suspension. This paper describes the reduction of vehicle longitudinal vibration that cannot be controlled by conventional actuators.
Technical Paper

Pre-Collision System for Toyota Safety Sense

2016-04-05
2016-01-1458
Toyota Safety Sense is a safety system package developed to help drivers avoid accident types with a high frequency of occurrence. This paper deals with pre-collision system which forms the core of Toyota Safety Sense, especially Toyota Safety Sense P which uses a combined sensor configuration consisting of a monocular camera paired with millimeter wave radar, in order to achieve both high recognition performance and reliability. The use of a wide-angle monocular camera, millimeter wave radar integrated in the front grill emblem, and a collision determination algorithm for pedestrian targets enabled the development of a pre-collision system comprising detection capability of crossing pedestrians. Toyota has developed warning and pre-collision brake assist for driver to assist in avoiding a collision effectively; In addition, Pre-collision brake has achieved high level of performance for the drivers who cannot avoid a collision.
Technical Paper

Obstacle Detection Systems for Vehicle Safety

2004-10-18
2004-21-0057
The increase in automobile accidents has heightened the awareness of safety in the general public, and serious safety measures have been pushed forward in various countries. Although those efforts have achieved a certain level of success, more effective methods are needed to cope with further increases of automobile ownership.Besides the collision safety, measures that prevent accidents or reduce the possibility of accidents will now be necessary to reduce the number of injuries.Here, we will present the current development status and issues for an obstacle recognition system that reduces the likelihood of accidents by utilizing radars and image sensors.
Technical Paper

New Drivetrain for Toyota's Flagship Lexus LFA Sports Car

2011-04-12
2011-01-1427
Toyota Motor Corporation has developed a new drivetrain for their flagship Lexus LFA sports car. Passionate driving experience was pursued at the forefront of development. Superior vehicle performance, handling, and responsiveness that seem to anticipate the driver's intentions are achieved. Special vehicle packaging and component placement are adopted in the LFA in order to realize such performance. The engine, clutch, and front counter gear are positioned at the front of the vehicle, and the transaxle at the rear. The engine and transaxle are connected by a rigid torque tube. The transaxle is an automated manual transmission equipped with an electrohydraulic actuator for controlling both the shift and clutch operations. This actuator enables accurate control of the transmission and extremely quick response to shift paddle operation by the driver. This paper describes a general outline of the drivetrain and each component that has significantly contributed to LFA product appeal.
Journal Article

Multiplex Communication Protocol for Switch/Sensor/Actuator Network: “CXPI”

2016-04-05
2016-01-0057
The growing functionality and complexity of recent vehicle electronic systems have made inter-device communication (on-board LAN) technology vital to vehicle design. By field of application, the LAN (Local Area Network) systems currently in use are LIN (Local Interconnect Network) used for body systems, CAN (Controller Area Network) used for control systems, and MOST (Media Oriented Systems Transport ) used for multimedia and camera systems, and work to standardize the next-generation communication technology for each of those fields is underway. This paper provides a technical overview of the CXPI (Clock Extension Peripheral Interface) communication protocol, which satisfies the body system requirements (rapid response, system extensibility, high reliability, and low cost). It also presents the progress made on standardization at SAE and other organizations.
Journal Article

Measurement of Oil Film Pressure in the Main Bearings of an Operating Engine Using Thin-Film Sensors

2008-04-14
2008-01-0438
We developed a technique to measure oil film pressure distribution in engine main bearings using thin-film pressure sensors. The sensor is 7μm in thickness, and is processed on the surface of an aluminum alloy bearing. In order to increase the durability of the sensor, a layer of MoS2 and polyamide-imide was coated on thin-film sensors. This technique was applied to a 1.4L common-rail diesel engine operated at a maximum speed of 4,500r/min with a 100Nm full load, and the oil film pressure was monitored while the engine was operating. The measured pressure was compared with calculations based on hydrodynamic lubrication (HL) theory.
Technical Paper

Knock Sensor Based Virtual Cylinder Pressure Sensor

2019-01-15
2019-01-0040
Typically the combustion in a direct injected compression ignited internal combustion engine is open-loop controlled. The introduction of a cylinder pressure sensor opens up the possibility of a virtual combustion sensor which could enable closed-loop combustion control and thus the potential to counteract effects such as engine part to part variation, component ageing and fuel quality diversity. Closed-loop combustion control requires precise, robust and preferably cheap sensors. This paper presents a virtual cylinder pressure sensor based on the signal from the inexpensive but well proven knock sensor. The method used to convert the knock sensor signal into a pressure estimate included the stages: Phase correcting the raw signal, Filtering the raw signal, Scaling the signal to known thermodynamic laws and provided engine sensors signals and Reconstructing parts of the signal with other known models and assumptions.
Technical Paper

Knock Sensor Based Virtual Combustion Sensor Signal Bias Sensitivity

2018-04-03
2018-01-1154
The combustion in a direct injected internal combustion engine is normally open-loop controlled. The introduction of cylinder pressure sensors enables a virtual combustion sensor which in turn enables closed-loop combustion control, and the possibility to counteract effects such as engine part-to-part variation, component ageing and fuel quality diversity. Closed-loop combustion control requires precise, robust and preferably cheap sensors. This paper presents an investigation of the robustness and the limitation of a knock sensor based virtual combustion sensor. This virtual combustion sensor utilize the common heat release analysis using a knock sensor based virtual cylinder pressure signal. Major virtual sensor error sources in a heavy-duty engine were identified as: the specific heat ratio model, the boost pressure and the crank angle phasing. The virtual sensor errors were quantified in relation to both the measured cylinder pressure and the total virtual sensor error.
Technical Paper

JCAPII Cross Check Tests of Fast Electrical Mobility Spectrometers for Evaluation of Accuracy

2007-10-29
2007-01-4081
Crosscheck tests of fast electrical mobility spectrometers, Differential Mobility Spectroscopy (DMS) and Engine Exhaust Particle Sizer(EEPS), were conducted to evaluate the accuracy of fine particle measurement. Two kinds of particles were used as test particles for the crosscheck test of instruments: particles emitted from diesel vehicles and diluted in a full dilution tunnel, and particles generated by CAST. In the steady state tests, it was confirmed that the average concentration of each instrument was within the range of ±2σ from the average concentration of all the same type of instruments. In the transient tests, it is verified that the instruments have almost equal sensitivity. For application of the fast electrical mobility spectrometers to evaluation of particle number and size distributions, it is essential to develop a calibration method using reference particle counters and sizers (CPC, SMPS, etc.) and maintenance methods appropriate for each model.
Technical Paper

Inverse Analysis of Road Contact Force and Contact Location Using Machine Learning with Measured Strain Data

2024-04-09
2024-01-2267
To adapt to Battery Electric Vehicle (BEV) integration, the significance of protective designs for battery packs against ground impact caused by road debris is very high, and there is also a keen interest in the feasibility assessment technique using Computer-Aided Engineering (CAE) tools for prototype-free evaluations. However, the challenge lies in obtaining real-world empirical data to verify the accuracy of the predictive CAE model. Collecting real-world data using actual battery pack can be time-consuming, costly, and accurately ascertaining the precise direction, magnitude, and location of the force applied from the road to the battery pack poses a challenging task. Therefore, in this study, we developed a methodology using machine learning, specifically Gaussian process regression (GPR), to perform inverse analysis of the direction, magnitude, and location of vehicle-road contact forces during rough road conditions.
Journal Article

Improvement of Temperature Prediction Method for Traction Contact

2016-04-05
2016-01-1110
This report proposes a method of improving the temperature prediction model for traction drive contact portion in order to improve prediction accuracy of the maximum traction coefficient, and then describes verification of this method. In our previous report, a method of estimating the maximum traction coefficient by expressing conditions inside the contact ellipse using a simple combination of viscosity and plasticity was proposed. For the rise in oil film temperature, a calculation model is used that considers maximum temperature to be the typical value. Furthermore, a thin film temperature sensor technology was developed to directly measure the temperature of traction contact of a four-roller experimental apparatus and a variator in an actual transmission, and its validity was confirmed.
Technical Paper

Heavy-Duty Engine Intake Manifold Pressure Virtual Sensor

2019-04-02
2019-01-1170
Increasing demands for more efficient engines and stricter legislations on exhaust emissions require more accurate control of the engine operating parameters. Engine control is based on sensors monitoring the condition of the engine. Numerous sensors, in a complex control context, increase the complexity, the fragility and the cost of the system. An alternative to physical sensors are virtual sensors, observers used to monitor parameters of the engine thus reducing both the fragility and the production cost but with a slight increase of the complexity. In the current paper a virtual intake manifold cylinder port pressure sensor is presented. The virtual sensor is based on a compressible flow model and on the pressure signal of the intake manifold pressure sensor. It uses the linearized pressure coefficient approach to keep vital performance behaviors while still conserving calibration effort and embedded system memory.
Technical Paper

Heat Release Based Virtual Combustion Sensor Signal Bias Sensitivity

2017-03-28
2017-01-0789
Typically, the combustion in an internal combustion engine is open-loop controlled. The introduction of a cylinder pressure sensor opens the possibility to introduce a virtual combustion sensor. This virtual sensor is a possible enabler for closed-loop combustion control and thus the possibility to counteract the effects of engine part to part variation, component ageing and fuel quality diversity. The extent to which these effects can be counteracted is determined by the detection limits of the virtual combustion sensor. To determine the limitation of the virtual combustion sensor, a virtual combustion sensor system was implemented based on a one-zone heat-release analysis, including the signal processing of the pressure sensor input. The typical error sources in a heavy-duty engine were identified and quantified. The virtual combustion sensor system was presented with flawed signals and the sensor’s sensitivities to the errors were quantified.
X