Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Fuel Effects on Particulate Emissions from D.I. Engine - Relationship among Diesel Fuel, Exhaust Gas and Particulates

1997-05-01
971605
The compositions of hydrocarbons in diesel fuel, exhaust gas and particulates were analyzed and the relationships among them were determined. It was found that the compositions of the hydrocarbons in the exhaust gas were almost the same as that of the fuel, and that the hydrocarbons in the particulates corresponded to their heavy fractions. When the engine condition was fixed, both the soluble organic fraction (SOF) and insoluble fraction ( ISF) showed positive correlation coefficients versus HC×R310, where HC denotes the hydrocarbon emission and R310 denotes the backend fraction, as measured by the fraction of fuel boiling above 310°C. On the other hand, when the engine condition was varied, ISF had negative correlation coefficients versus HC×R310, while SOF showed positive correlation coefficients.
Journal Article

Emissions Reduction Potential of Extremely High Boost and High EGR Rate for an HSDI Diesel Engine and the Reduction Mechanisms of Exhaust Emissions

2008-04-14
2008-01-1189
The effects of an increasing boost pressure, a high EGR rate and a high injection pressure on exhaust emissions from an HSDI (High Speed Direct Injection) diesel engine were examined. The mechanisms were then investigated with both in-cylinder observations and 3DCFD coupled with ϕT-map analysis. Under a high-load condition, increasing the charging efficiency combined with a high injection pressure and a high EGR rate is an effective way to reduce NOx and soot simultaneously, which realized an ultra low NOx of 16ppm at 1.7MPa of IMEP (Indicated Mean Effective Pressure). The flame temperature with low NOx and low soot emissions is decreased by 260K from that with conventional emissions. Also, the distribution of the fuel-air mixture plot on a ϕT-map is moved away from the NOx and soot formation peninsula, compared to the conventional emissions case.
Technical Paper

Effect of Hydrocarbon Molecular Structure on Diesel Exhaust Emissions Part 2: Effect of Branched and Ring Structures of Paraffins on Benzene and Soot Formation

1998-10-19
982495
The effect of the chemical reactivity of diesel fuel on PM formation was investigated using a flow reactor and a shock tube. Reaction products from the flow-reactor pyrolysis of the three diesel fuels used for the engine tests in Part 1(1) (“Base”, “Improved” and Swedish “Class-1”) were analyzed by gas chromatography. At 850C, Swedish “Class-1” fuel was found to produce the most PM precursors such as benzene and toluene among the three fuels, even though it contains very low amounts of aromatics. The chemical analyses described in Part 1 revealed that “Class-1” contains a large amount of branched and cyclic structures in the saturated hydrocarbon portion of the fuel. These results suggest that the presence of such branched and ring structures can increase exhaust PM emissions.
Technical Paper

Cause of Exhaust Smoke and Its Reduction Methods in an HSDI Diesel Engine Under High-Speed and High-Load Conditions

2002-03-04
2002-01-1160
The cause of the exhaust smoke and its reduction methods in a small DI Diesel engine with a small-orifice-diameter nozzle and common rail F.I.E. were investigated under high-speed and high-load condition, using both in-cylinder observations and Three-dimensional numerical analyses. The following points were clarified during this study. At these conditions, fuel sprays are easily pushed away by a strong swirl, and immediately flow out to the squish area by a strong reverse squish. Therefore, the air in the cavity is not effectively used. Suppressing the airflow in a piston cavity, using such ideas as enlarging the piston cavity diameter or reducing the port swirl ratio, decreases the excessive outflow of the fuel-air mixture into the squish area, and allows the full use of air in the whole cavity. Hence, exhaust smoke is reduced.
X