Refine Your Search

Topic

Author

Search Results

Technical Paper

Variation in Nerve Fiber Strain in Brain Tissue Subjected to Uniaxial Stretch

2007-10-29
2007-22-0006
Diffuse axonal injury (DAI) is the most frequent type of closed head injury involved in vehicular accidents, and is characterized by structural and functional damage of nerve fibers in the white matter that may be caused by their overstretch. Because nerve fibers in the white matter have an undulated network-like structure embedded in the neuroglia and extracellular matrix, and are expected to be much stiffer than other components, the strain in the nerve fiber is not necessarily equal to that in the white matter. In this study, the authors have measured strain of the nerve fibers running in various directions in porcine brain tissue subjected to uniaxial stretch and compared them with global strain (tissue strain). The nerve fiber strain had a close correlation with their direction, and was smaller than surrounding global strain.
Technical Paper

Validation of Diesel Fuel Spray and Mixture Formation from Nozzle Internal Flow Calculation

2005-05-11
2005-01-2098
A series calculation methodology from the injector nozzle internal flow to the in-cylinder fuel spray and mixture formation in a diesel engine was developed. The present method was applied to a valve covered orifice (VCO) nozzle with the recent common rail injector system. The nozzle internal flow calculation using an Eulerian three-fluid model and a cavitation model was performed. The needle valve movement during the injection period was taken into account in this calculation. Inside the nozzle hole, cavitation appears at the nozzle hole inlet edge, and the cavitation region separates into two regions due to a secondary flow in the cross section, and it is distributed to the nozzle exit. Unsteady change of the secondary flow caused by needle movement affects the cavitation distribution in the nozzle hole, and the spread angle of the velocity vector at the nozzle exit.
Technical Paper

Twenty-Year Review of Polymer-Clay Nanocomposites at Toyota Central R&D Labs., Inc.

2007-04-16
2007-01-1017
More than twenty years have passed since we invented polymer-clay nanocomposites (PCN), in which only a few wt.-% of silicate is randomly and homogeneously dispersed in the polymer matrix. When molded, these nanocomposites show superior properties compared to pristine polymers such as tensile strength, tensile modulus, heat distortion temperature, gas barrier property, and so on. The number of papers on PCN has increased rapidly in recent years, reaching over 500 only in 2005. As the pioneers of the new technology, we will review its history highlighting our works. Epoch-making events of PCN are as follows: In 1985, The first PCN, nylon 6-clay hybrid (NCH), was invented. In 1987, NCH was first presented at the ACS Fall Meetings. In 1989, NCH was presented at the MRS Fall Meetings, firing PCN. In 1989, Toyota launched cars equipped with a NCH part. In 1996, Clay was found to cause a memory effect in liquid crystals.
Technical Paper

Temperature Distribution and Lubrication Characteristics of Connecting Rod Big End Bearings

1995-10-01
952550
Temperature distributions on the surface of a connecting rod big end bearing were measured to understand the margin to the allowable limiting temperature. The results show that the temperature difference between the bearing surface and the feed oil is independent of the engine load but quadratically increased with the engine speed, and that the bearing surface temperature on the rod side is higher than those on the cap side, and that the high temperature regions appeared near the edges on the rod side of the bearing under high speed operations. The results were analyzed by the observation of rubbing traces on the bearing surface and the EHD lubrication theory.
Technical Paper

Structural Vibration Analysis in Turbocharger-Exhaust Systems

1993-05-01
931318
Engine running tests and excitation tests were performed to reveal the vibration behavior in a turbocharger-exhaust system related to the turbocharger's operating sound. The operating sound was caused by the resonant vibration excited by the unbalanced inertia force of the rotor. The turbocharger-exhaust system had six resonant frequencies in the operating speed range of the rotor. At resonant speeds, the whole turbocharger was translating or rotating due to bending and torsional deflection of the exhaust manifold. Based on the test results, the vibration behavior could be well simulated by a rigid body-spring model with six degree of freedom. Furthermore, the model was used to analyze the relation between the stiffness of the exhaust manifold and the vibration level. Increasing the stiffness of the exhaust manifold was effective in sufficiently reducing the vibration and sound.
Technical Paper

Stratification Features of Swirl Nozzle Sprays and Slit Nozzle Spray in DI Gasoline Combustion

2003-05-19
2003-01-1812
The stratification feature of DI gasoline combustion was studied by using a constant volume combustion vessel. An index of stratification degree, defined as volumetric burning velocity, has been proposed based on the thermodynamic analysis of the indicated pressure data. The burning feature analysis using this stratification degree and the fuel vapor concentration measurement using He-Ne laser ray absorption method were carried out for the swirl nozzle spray with 90° cone angle and the slit nozzle spray with 60° fan angle. Ambient pressure and ambient temperature were changed from atmospheric condition to 0.5∼0.6 MPa and 465 K, respectively. Air Swirl with swirl ratio of 0∼1.0 were added for the 90° swirl nozzle spray. Single component fuels with different volatility and self-ignitability from each other were used besides gasoline fuel. The major findings are as follows. High ambient temperature improves stratification degree due to the enhanced fuel vaporization and vapor diffusion.
Technical Paper

Schlieren Observations of In-Cylinder Phenomena Concerning a Direct-Injection Gasoline Engine

1998-10-19
982696
The schlieren visualization of in-cylinder processes from the side of an engine cylinder is useful to understand the phenomena which change along the cylinder axis. A transparent collimating cylinder, TCC, permits schlieren observation inside the cylinder through its transparent wall. In this study, a single cylinder visualization engine with the TCC was applied to a direct-injection gasoline engine. A fuel spray, mixture formation and combustion were observed with a simultaneous measurement of in-cylinder pressure. The shape of the fuel spray and subsequent mixture formation process are drastically changed with the injection timing. The images of luminous flame were also taken with the schlieren images during the combustion period. Stable combustion, misfire and abnormal combustion are discussed with the comparison between the observed results and in-cylinder pressure analysis.
Technical Paper

Research and Development of a New Direct Injection Gasoline Engine

2000-03-06
2000-01-0530
A new stratified charge combustion system has been developed for direct injection gasoline engines. The special feature of this system is employment of a thin fan-shaped fuel spray formed by a slit nozzle. The stratified mixture is produced by the combination of this fan-spray and a shell-shaped piston cavity. Both under-mixing and over-mixing of fuel in the stratified mixture is reduced by this system. This combustion system does not require distinct charge motion such as tumble or swirl, which enables intake port geometry to be simplified to improve full load performance. The effects of the new system on engine performance at part load are improved fuel consumption and reduced smoke, CO and HC emissions, obviously at medium load and medium engine speed. HC emissions at light load are also improved even with high EGR conditions.
Technical Paper

Reduction of the BPF Noise Radiated from an Engine Cooling Fan

2014-04-01
2014-01-0631
This study investigates the reduction of the Blade Passing Frequency (BPF) noise radiated from an automotive engine cooling fans, especially in case of the fan with an eccentric shroud. In recent years, with the increase of HV and EV, noise reduction demand been increased. Therefore it is necessary to reduce engine cooling fan noise. In addition, as a vehicle trend, engine rooms have diminished due to expansion of passenger rooms. As a result, since the space for engine cooling fans need to be small. In this situation, shroud shapes have become complicated and non-axial symmetric (eccentric). Generally, the noise of fan with an eccentric shroud becomes worse especially for BPF noise. So it is necessary to reduce the fan BPF noise. The purposes of this paper is to find sound sources of the BPF noise by measuring sound intensity and to analyze the flow structure around the blade by Computational Fluid Dynamics (CFD).
Technical Paper

Reduction of Diesel Particulate Matter by Oil Consumption Improvement Utilizing Radioisotope Tracer Techniques

1997-05-01
971630
A study was conducted to reduce unburned oil fractions in diesel particulate matter (PM) by improving oil consumption. A method utilizing radioisotope 14C was developed to measure the unburned oil fractions separately for the four paths by which oil is consumed: valve stem seals, piston rings, PCV system, turbocharger. The conversion ratio of oil consumption to PM was calculated by comparing the unburned oil emission rates with oil consumption rates, which were obtained by the use of the 35S tracer method. The result in an experimental diesel engine shows the highest conversion ratio for the oil leaking through the valve stem seals. The modifications to the engine were thereby focused on reducing the leakage of the stem seals. This stem seal modification, along with piston ring improvements, reduced oil consumption, resulting in the unburned oil fractions in PM being effectively reduced.
Technical Paper

Quantitative Optical Analysis and Modelling of Short Circuits and Blow-Outs of Spark Channels under High-Velocity Flow Conditions

2018-09-10
2018-01-1728
This study models short circuits and blow-outs of spark channels. The short circuit model assumes that a spark channel is short-circuited between two arbitrary locations when the electric potential difference between the two locations exceeds the voltage which enables electrical insulation breakage in-between. The threshold voltage can be raised by increasing the distance between the two locations and decreasing the discharge current. Discharge current, in this model, represents the influence of both the spread and the number of electrically charged particles, i.e., electrons and positive ions, distributed near the two locations. Meanwhile, the blow-out model assumes that a strong flow diffuses electrons and positive ions in the spark channel, and consequently the discharge blows out.
Journal Article

Numerical Simulation for Designing Next Generation TWC System with Detailed Chemistry

2008-06-23
2008-01-1540
A one-dimensional (1-D) micro-kinetic reaction model with considering mass transport inside porous washcoat was developed to promote an effective development of multi-functional catalysts. The validation of this model has been done successfully through the comparison with a set of basic experiments. A numerical simulation study was conducted for the various catalyst configurations of three-way catalysts under Federal Test Procedure (FTP75) condition. It was found that a double layer type had a significant advantage in the total mass emissions, especially in NOx emissions. The reaction mechanisms in these catalysts were numerically clarified from the view point of detailed reaction dynamics. We concluded that the utilization of the numerical simulation with the detailed chemistry was effective for the optimization of catalyst design.
Technical Paper

Numerical Analysis on Multi-Component Fuel Behaviors in a Port-Injection Gasoline Engine

1999-10-25
1999-01-3642
A multi-component fuel vaporization model is developed for numerical analysis of specific fuel component behaviors in port-fuel-injection(PFI) gasoline engines. In order to specify the differences of in-cylinder fuel distribution among its components, three-dimensional calculations of intake flow, spray and vapor motion of each component are performed with respect to engine wall temperature and the distillation characteristics of the fuel. Simultaneous measurements of in-cylinder behaviors of different volatility components in the fuel are also carried out using a laser-induced fluorescence (LIF) technique to validate the calculation results. In both measurements and calculations, the same fuels are used, which are composed of seven or eight components to simulate the distillation characteristics of two kinds of gasoline. The in-cylinder vapor amount of high and low volatility components is compared between the calculations and the experiments.
Technical Paper

Numerical Analysis of Fuel Behavior in a Port-Injection Gasoline Engine

1997-02-24
970878
Three-dimensional numerical analysis of fuel liquid and mixture behavior in a port-injection gasoline engine is assessed by comparing calculations with measurements. The fuel mass distributed in the intake port and cylinder is measured using an engine with hydraulic valve and gas sampling system. The experimental results show that about half of the fuel mass per injection enters the cylinder, and the rest stays in the port. The difference of the mass fraction of injected fuel directly entering the cylinder is small between the cases of single pulse injection and serial injection. Therefore, three-dimensional calculation presupposing single pulse injection has difficulty in predicting the in-cylinder mixture formation process, although it can analyze the amount of fuel wetting the port wall. The calculations are performed for a port-injection engine, and the differences of fuel behavior with respect to swirl control valve opening and wall temperature are discussed.
Technical Paper

Modeling of Wall Impinging Behavior with a Fan Shaped Spray

2003-05-19
2003-01-1841
The experiment-based droplet impinging breakup model was applied to a fan shaped spray and the impinging behavior was analyzed quantitatively. Evaluation of the quantitative results with validation tests verified the following. The model enables prediction of fan shaped spray thickness after impingement caused by the breakup of fuel droplets, which could not be represented with the Wall-Jet model, widely used at present. Fuel film movement on a wall is negligible when the injection pressure of the fan shaped spray is high and the spray travelling length is not too short. The proposed heat transfer coefficient between fuel film and the wall is too small to represent the vaporizing rate of the fuel film.
Technical Paper

Measurement of Air-Fuel Mixture Distribution in a Gasoline Engine Using LIEF Technique

1992-10-01
922356
The laser-induced exciplex fluorescence (LIEF) technique, currently used to observe mixture formation in a diesel engine, has been applied to a spark ignition (SI) engine and a new equivalence ratio calibration technique has been developed in order that two-dimensional measurements of the equivalence ratio may be made in an operating engine. Spectrally separated fluorescent images of liquid and vapor phase fuel distributions were obtained by adding new exciplex-forming dopants to the gasoline fuel. Dual light sheets from an excimer laser were introduced into one of the cylinders of a 4-valve lean-burn engine, and 2-D images of the mixture formation were recorded at pre-set crank angles during the induction and compression strokes by an image-intensified camera equipped with the appropriate filter.
Technical Paper

Measurement and Simulation of Valve Motion

1993-11-01
931901
The valve motion of a direct-acting valve train was measured, and an equivalent model with the main object of the jump and bounce occurrence and the valve spring stresses was developed, as described below: (1) The jump and bounce were clarified by direct measurement at the positions they occurred. (2) The equivalent model was developed which features the contact elements and the valve spring model with two or more masses per coil and the function of coil contact. (3) Based on the experimental results, identification of parameters and verification of the model were performed. It was proved that the simulation corresponded with the experimental results. (4) Using this model, the accurate prediction of the motions and stresses of reciprocating components becomes possible in the design process. (5) Consequently, a synthetic tool for the design and evaluation for valve trains driven at higher speed is completed.
Journal Article

Lubrication Analysis of a Con-Rod Bearing Using a Cycle Simulation of Gasoline Engines with A/F Variation

2011-08-30
2011-01-2118
In the case of engine bearings, pressure in a cylinder is necessary for the analysis of lubrication. In this study, a cycle simulation of gasoline engines has been developed to predict the pressure in the cylinder under the wide range of engine operation. In the cycle simulation, intake and exhaust processes are included and combustion process is calculated with flame propagation based on burning velocity. Here, the equation of ignition delay and the equation of burning velocity were determined with experimental results of a gasoline engine over wide A/F ratio. The pressure in the cylinder over the engine cycle is introduced into an elastohydrodynamic lubrication analysis of a con-rod bearing to calculate the load on the bearing in addition to the inertia force. Orbital movement, minimum film thickness, and power loss in the bearing were estimated over the wide range of engine operation.
Technical Paper

Low Friction Property and its Mechanism of DLC-Si Films Under Dry Sliding Conditions

2007-04-16
2007-01-1015
Diamond-like carbon (DLC) films are of significant interest for the automobile field, because they possess the potential to improve friction properties under various sliding conditions. Among the various DLC films, the authors focus on silicon-containing DLC (DLC-Si) films, which exhibit extremely low friction coefficient under dry sliding conditions in an ambient air atmosphere. The aim of this study is to examine the influence of silicon content in DLC-Si films on the friction property of the films, and to clarify the low friction mechanism of the films. The friction test was conducted under dry sliding conditions. It was found that the films have an exceedingly low friction coefficient (about 0.05) ranging in silicon content from 4 at% to 17 at%. In order to examine the low friction mechanism of the films, surface analyses were done on the wear surface of DLC-Si films slid against bearing steel.
Technical Paper

Investigation on Oxidation Stability of Engine Oils Using Laboratory Scale Simulator

1995-10-01
952528
The purposes of this paper are to develop a new laboratory oxidation stability testing method and to clarify factors relative to the viscosity increase of engine oil. Polymerized products, obtained from the oil after a JASO M333-93 engine test, were found to consist mainly of carboxyl, nitrate and nitro compounds and to increase the oil viscosity. A good similarity between the JASO M333-93 test and the laboratory simulation test was found for the polymerized products. The products were obtained not by heating oil only in air but by heating oil while supplying a synthetic blowby gas consisting of fuel pyrolysis products, NO, SO2 and air. The laboratory test has also revealed that the viscosity increase depends on oil quality, organic Fe content and hydrocarbon composition in the fuel. Moreover, it has been found that blowby gas and organic Fe accelerate ZnDTP consumption and that aromatics concentration in the fuel correlates with the viscosity increase of oil.
X