Refine Your Search

Topic

Author

Search Results

Technical Paper

Toyota Lean Combustion System - The Third Generation System

1993-03-01
930873
The third generation four valve lean combustion engine controlled by newly designed combustion pressure sensor has been developed. This combustion sensor composed of a metal diaphragm and a thin silicone layer formed on devitron piece detects the combustion pressure in the No.1 cylinder. Comparing with the lean mixture sensor equipped in the first and second generation lean combustion engine, the lean misfire limit was detected directly with this sensor, and the lean operation range was expanded, which realized lower fuel consumption and NOx emission. The output torque fluctuation was minimized by precisely compensating the fuel supplied to individual cylinder based on the crank angle sensor signal. Separated dual intake ports, one with the swirl control valve and the other with helical port shape was designed and a twin spray injection nozzle was equipped between those ports. The swirl ratio was lowered from 2.2 to 1.7.
Technical Paper

Toyota Central Injection (Ci) System for Lean Combustion and High Transient Response

1985-10-01
851675
Lean mixture operation and high transient response has been accomplished by the introduction of newly designed Central Injection (Ci) system. This paper describes the effects of Ci design variables on its performance. Lean mixture operation has been attained by optimizing the injection interval, injection timing and fuel spray angle in order to improve the cylinder to cylinder air-fuel ratio distribution. Both air-fuel distribution and transient engine response are affected by the fuel spray angle. Widening the fuel spray angle improves the air-fuel distribution but worsen the transient engine response. This inconsistency has been solved by off-setting the injector away from the center axis of the throttle body and optimizing the fuel spray angle.
Technical Paper

Slit Nozzle Injector for A New Concept of Direct Injection SI Gasoline Engine

2000-06-19
2000-01-1902
A direct injection spark ignition (DISI) gasoline engine with a new stratified charge combustion concept has been launched on the Japanese domestic market. This new concept consists of two components. First, a thin fan-shaped spray from a slit nozzle enables wide spray dispersion, moderate spray penetration and a fine atomization. Second, a shell-shaped piston cavity allows better mixture formation, however avoiding distinct charge motions (such as tumble or swirl). Simple intake port geometry increases the full load performance. The combustion concept, at the same time allows stratified charge to be used at higher load and at higher engine speeds and improves the homogeneous charge combustion. A new 3L in-line 6 gasoline engine with this combustion concept showed 20% better fuel economy than a 3L port fuel injection (PFI) engine (λ=1 feed back system) under the Japanese 10-15 mode.
Technical Paper

Simulation of Abnormal Fuel Injection in Diesel Engines

1990-02-01
900345
Abnormal fuel injection in light-duty, high-speed diesel engines was analyzed by developing a mathematical simulation program. It predicts the transient hydraulic phenomena and the dynamics of the mechanical components by applying the injection system design data. The results show the existence of marked changes of injection quantity against residual pressure, cavity content and pump speed, in the case of abnormal fuel injection. Closer observation reveals that the injection rate change from two-stage to one-stage causes a marked change in injection quantity.
Technical Paper

Research of the DI Diesel Spray Characteristics at High Temperature and High Pressure Ambient

2007-04-16
2007-01-0665
In order to clarify the diesel fuel spray characteristics inside the cylinder, we developed two novel techniques, which are preparation of same level of temperature and pressure ambient as inside cylinder and quantitative measurement of vapor concentration. The first one utilizes combustion-type constant-volume chamber (inner volume 110cc), which allows 5 MPa and 873K by igniting the pre-mixture (n-pentane and air) with two spark plugs. In the second technique, TMPD vapor concentration is measured by using Laser Induced Exciplex Fluorescence method (LIEF). The concentration is compensated by investigation of the influence of ambient pressure (from 3 to 5 MPa) and temperature (from 550 to 900 K) on TMPD fluorescence intensity. By using two techniques, we investigated the influence of nozzle hole diameter, injection pressure and ambient condition on spray characteristics.
Technical Paper

Research and Development of a New Direct Injection Gasoline Engine

2000-03-06
2000-01-0530
A new stratified charge combustion system has been developed for direct injection gasoline engines. The special feature of this system is employment of a thin fan-shaped fuel spray formed by a slit nozzle. The stratified mixture is produced by the combination of this fan-spray and a shell-shaped piston cavity. Both under-mixing and over-mixing of fuel in the stratified mixture is reduced by this system. This combustion system does not require distinct charge motion such as tumble or swirl, which enables intake port geometry to be simplified to improve full load performance. The effects of the new system on engine performance at part load are improved fuel consumption and reduced smoke, CO and HC emissions, obviously at medium load and medium engine speed. HC emissions at light load are also improved even with high EGR conditions.
Technical Paper

Plate Type Methanol Steam Reformer Using New Catalytic Combustion for a Fuel Cell

2002-03-04
2002-01-0406
Methanol steam reforming, which is an endothermic reaction, needs some heating. Both methanol conversion ratio and carbon monoxide (CO) concentration increase when temperature is elevated. As CO poisons a typical polymer electrolyte of a fuel cell, the relationship between methanol conversion ratio and CO concentration is a trade-off one. It was found from preliminary researches that the reforming reaction speed is controlled by heat transfer rate at large methanol flow rate, where methanol conversion ratio becomes lower and CO concentration becomes higher. Therefore it is necessary to develop a new methanol reforming concept that provides stable combustion for heating and enhanced heat transfer for improving the trade-off relationship and making a compact reformer. Reforming catalyst using metal honeycomb support and a new catalytic combustion were applied to a new concept plate type methanol steam reformer, which is used in a fuel cell of 3 kW-class electric generation.
Technical Paper

NOx Reduction is Compatible with Fuel Economy Through Toyota’s Lean Combustion System

1985-06-01
851210
T-LCS (TOYOTA LEAN COMBUSTION SYSTEM ) has made the engine possible to be operated with very lean mixture over 22 of air-fuel ratio, and achieved the NOx reduction and the improvement of fuel economy. This system has two features, one of which is the feed-back control of lean mixture strength using the LEAN MIXTURE SENSOR that has been newly developed. The other feature is the improved combustion through the SWIRL CONTROL VALVE and individual timing control of fuel injection for each cylinder. The influence of the test patterns, the vehicle weight and the air-fuel ratio on the exhaust emissions of lean combustion system has been examined and the results are reported in this paper.
Technical Paper

Mixture Preparation and HC Emissions of a 4-Valve Engine with Port Fuel Injection During Cold Starting and Warm-up

1995-02-01
950074
In order to reduce tail-pipe hydrocarbon emissions from SI gasoline engines, rapid catalyst warm-up and improvement of catalyst conversion efficiency are important. There are many reports which have been published by manufacturers and research institutes on this issue. For further reduction of tail-pipe hydrocarbon emissions, it is necessary to reduce engine-out hydrocarbon emissions and to improve after treatment, during the time the catalyst is not activated. This paper quantitatively analyzed the fuel amount of intake port and cylinder wall-wetting, burned fuel and engine-out hydrocarbon emissions, cycle by cycle in firing condition, utilizing a specially designed analytical engine. The effect of mixture preparation and fuel properties for engine-out hydrocarbon emissions, during the cold engine start and warm-up period, were quantitatively clarified.
Technical Paper

Life Cycle Inventory Study of Automotive Fuel Tank

1997-04-08
971177
As a means of effectively incorporating the concept of “life cycle” for reducing the environmental impact of the automobile, we carried out a life cycle inventory study on a part-by-part basis. The targets of our study are the fuel tanks that are made of different materials and manufacturing processes. One is made of steel, and the other is made of plastic, both perform identical functions. Our evaluation study encompasses the period from the manufacturing of the main materials until the disposal of the tanks. The evaluation items consist of the amount of energy consumed and the emissions (of CO2, NOx, SOx, and PM) that are released into the atmosphere. The results show that the plastic tank poses a greater burden in terms of the amount of energy consumed and the CO2 and NOx emitted.
Technical Paper

Key Factors of Fuel Injection System to Draw Out Good Response in 4-Valve Engine

1987-02-01
870126
Fuel and air behavior in the induction passage of a 4-valve engine were investigated in order to improve response at low and medium engine speeds. It was found that response is affected not only by wall vetting but also by fuel being pushed back into the intake manifold and by a lack of fuel which occurs during the transient. Futhermore, fuel-air mixing was found to be insufficient at certain injection timings, resulting in poor combustion and a consequent increase in exhaust emission and fuel consumption. This paper describes the factors of the fuel injection system which are critical for optimum response. Recommendations are made for injector location and injection timing and a proposal is put forward for a system of compensatory fuel injection to improve combustion efficiency during acceleration.
Technical Paper

Improvements to Premixed Diesel Combustion with Ignition Inhibitor Effects of Premixed Ethanol by Intake Port Injection

2010-04-12
2010-01-0866
Premixed diesel combustion modes including low temperature combustion and MK combustion are expected to realize smokeless and low NOx emissions. As ignition must be delayed until after the end of fuel injection to establish these combustion modes, methods for active ignition control are being actively pursued. It is reported that alcohols including methanol and ethanol strongly inhibit low temperature oxidation in HCCI combustion offering the possibility to control ignition with alcohol induction. In this research improvement of diesel combustion and emissions by ethanol intake port injection for the promotion of premixing of the in-cylinder injected diesel fuel, and by increased EGR for the reduction of combustion temperature.
Technical Paper

High Accuracy Capacitance Type Fuel Sensing System

1993-03-01
930359
A highly accurate fuel sensing system has been developed which provides a digital indication of the remaining fuel on a l/P cluster. This system uses capacitance type sensors placed in the fuel tank to detect fuel level changes. This system uses three capacitance type sensors which enables it to determine highly accurate fuel level even in sloped surfaces. This fuel level sensor has been in production since 1991 and today is used on the TOYOTA SOARER in Japan.
Technical Paper

Fuel Spray Simulation of Slit Nozzle Injector for Direct-Injection Gasoline Engine

2002-03-04
2002-01-1135
In direct-injection (DI) gasoline engines, spray characteristics greatly affect engine combustion. For the rapid development of new gasoline direct-injectors, it is necessary to predict the spray characteristics accurately by numerical analysis based on the injector nozzle geometry. In this study, two-phase flow inside slit nozzle injectors is calculated using the volume of fluid method in a three-dimensional CFD. The calculation results are directly applied to the boundary conditions of spray calculations, of which the submodels are recently developed to predict spray formation process in direct injection gasoline engines. The calculation results are compared with the experiments. Good agreements are obtained for typical spray characteristics such as spray shape, penetration and Sauter mean diameter at both low and high ambient pressures. Two slit nozzle injectors of which the slit thickness is different are compared.
Technical Paper

Fuel Effects on Particulate Emissions from D. I. Engine - Chemical Analysis and Characterization of Diesel Fuel

1995-10-01
952351
The properties of diesel fuels were investigated in terms of particulate emissions to clarify the specification of such a diesel fuel for minimizing particulate emissions. Diesel fuels were analyzed using thin layer chromatography (TLC), and gas chromatography/mass spectrometry (GC/MS). These analysis revealed the entire composition of hydrocarbons in diesel fuels according to molecular formula. The entire composition of hydrocarbons in diesel fuels could be expressd on a three-dimensional graph: the X-axis as carbon number, the Y-axis as H/C ratio and the Z-axis as the amount of hydrocarbons of identical molecular formula. By using the graph, the properties reported so far were investigated. Also, simplified images of the fuel sprayed into a cylinder and its flame were derived from the observational results previously reported.
Journal Article

FAME Blended Diesel Fuel Impacts on Engine/Vehicle Systems

2011-08-30
2011-01-1944
The impact of fatty acid methyl ester (FAME) blended diesel fuel on engine/vehicle systems was comprehensively investigated by vehicle, laboratory and engine tests. In this study, 20% FAME blended fuel (B20) was mainly used and soy bean oil methyl ester (SME) was primarily selected as the FAME. Vehicle testing with long-term fuel storage in vehicle fuel tanks was conducted, considering the most severe conditions in market use. Laboratory and engine tests were also conducted to better understand the vehicle test results. In the vehicle test, engine startability, idle roughness and fuel injection control were evaluated using nine vehicles with plastic or metal fuel tanks. All vehicles showed no problems up to 7 months. While five vehicles with plastic fuel tank did not show any problems throughout the test period up to 18 months, four vehicles with metal fuel tanks experienced malfunctions in engine start or fuel injection control following 8, 13, 13 and 18 months respectively.
Technical Paper

Effects of Methanol/Gasoline Blends on Hot Weather Driveability

1987-02-01
870368
The effects of methanol/cosolvent/gasoline blends on hot weather driveability are surveyed. Results show that startability after engine-off soak drastically deteriorates in an EFI vehicle. By observing the behavior of the fuel in the delivery pipe during hot-start testing and the injected fuel spray shape at high fuel temperature, the authors confirmed that the main cause of this malfunction was the vapor lock in the injector nozzle. The relationship between hot weather driveability and fuel properties is discussed. The gasoline volatility expression commonly used to indicate deterioration in hot weather driveability was found to underestimate the increase in volatility of blended fuels at higher temperatures. A suggestion is made for a modification to the expression to include the effects of methanol blending on volatility characteristics at high temperatures so that EFI vehicle hot-startability may be predicted.
Technical Paper

Development of Vehicle Power Connector Equipped with Outdoor Power Outlet Using Vehicle Inlet of Plug-In Hybrid Vehicle

2013-04-08
2013-01-1442
After the Great East Japan Earthquake on March 11, 2011, Toyota Motor Corporation received considerable public response regarding the role of vehicles in emergencies from a large number of customers. These included comments about the usefulness of the electricity supply system in the Estima Hybrid during the long power outages caused by the earthquake. In response, Toyota decided to install this system in its other hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs). This system is capable of supplying power up to 1,500 watts, which means that it can be used to operate virtually every household electrical device. Since the engine starts automatically when the main battery capacity is depleted, a single vehicle can supply the daily power needs of a normal house in Japan for about four days, providing that the battery is fully charged and the fuel tank is full.
Technical Paper

Development of Vapor Reducing Fuel Tank System

2001-03-05
2001-01-0729
In succession to the world-first introduction of a mass production gasoline hybrid passenger car into the Japanese market in 1997, Toyota also has introduced an enhanced version of the above to the US and European markets in 2000. Upon introduction of Toyota Hybrid System (THS) into the US market, a drastic reduction of gasoline vapor evaporation from the fuel tank was necessary, in order to meet the most stringent exhaust emission (SULEV) and evaporative emission standards in the world. In order to meet this requirement, a fuel tank system named “Vapor Reducing Fuel Tank System” was developed. This is the first commercial application in the world to use a variable tank volume to drastically reduce gasoline vapor generation.
Technical Paper

Development of New Control Methods to Improve Response of Throttle Type Traction Control System

1992-02-01
920608
A description is made of new control methods to improve response of wheel slip regulation. These methods enabled a new Traction Control (TRC) system based on throttle control rather than brake pressure to be developed. Major points are as follows: (1) Use of fuel injection cut-off to minimize delay (2) Additional adaptive throttle control logic By these means, a response nearly equal to that with brake pressure control is achieved at lower cost and with a considerable weight saving. Furthermore, the system, by suppressing noise and vibration, enhances the driver's control ability.
X