Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vehicle Transient Response Based on Human Sensitivity

2008-04-14
2008-01-0597
Grip feeling is an important facet in vehicle dynamics evaluation from a driver satisfaction and enjoyment standpoint. To improve grip feeling, we analyzed the subjective comments from test driver's about grip feeling and an evaluated human sensitivity to lateral motion. As a result, we found that drivers evaluate transient grip feeling according to the magnitude of lateral jerk. Next, we analyzed what vehicle parameters affect lateral jerk by using theoretical equations. As a result, we found that cornering power is an important parameter, especially the cornering power of rear tires as they can be create larger lateral jerk than can front tires.
Technical Paper

Vehicle Stability Control in Limit Cornering by Active Brake

1996-02-01
960487
Improvement of vehicle dynamics in limit cornering have been studied. Simulations and tests have verified that vehicle stability and course trace performance in limit cornering have been improved by active brake control of each wheel. The controler manages vehicle yaw moment utilizing difference braking force between left and right wheels, and vehicle deceleration utilizing sum of braking forces of all wheels.
Technical Paper

Vehicle Dynamics Innovation with In-Wheel Motor

2011-05-17
2011-39-7204
In-wheel motors (IWM) will be a key technology that contributes to the popularization of electric vehicles. Combining electric drive with IWM enables both good vehicle dynamics and a roomy interior. In addition, the responsiveness of IWM is also capable of raising dynamic control performance to an even higher level. IWM enable vertical body motion control as well as direct yaw control, electric skid control, and traction control. This means that IWM can replace most control actuators used in a vehicle chassis. The most important technology for IWM is to enable the motor to coexist with the brake and the suspension arms inside the wheel. The IWM drive unit described in this paper can be installed with a front double wishbone suspension, the most difficult configuration.
Technical Paper

Valve Rocker Arm Material for Investment Casting

1985-11-11
852203
In order to develop the valve rocker arm material for the new type engine, we investigated various materials whose chemical compositions were selected using 30% chromium cast iron, which had shown good results in screening evaluation tests, as the basis. High chromium cast irons are well known for their abrasive wear resistance, but it has been very difficult to apply them for use as rocker arm material because their machinability is very poor, and because it is difficult for them to have a regular microstructure. In this paper, both the manufacturing method for the rocker arm which decreases the disadvantages that high chromium cast iron have and the rocker arm material best suited for this method are described.
Technical Paper

Toyota's New Integrated Drive Power Control System

2007-04-16
2007-01-1306
Toyota has developed a new system, which uses integrated control of powertrain by PowerTrain Management (PTM), in order to improve driving comfort and reliability. This system is currently in use on Lexus's new LS460. This system is composed of 4 parts: a generation part, a mediating part, a modification part and a distribution part. In each part, processes are based on drive power and torque. In the generation part, requests from a programmed model driver, Driving Support Computer and Vehicle Dynamics Integrated Management (VDIM) are generated and expressed by drive power. In the mediating part, most suitable vehicle drive power was selected among the requests. In the modification part, the selected request is modified using a programmed powertrain model, which considers internal combustion engine condition and powertrain response and transmission's tolerance. In the distribution part, optimized engine torque and gear ratio are processed.
Technical Paper

Toyota Lean Combustion System - The Third Generation System

1993-03-01
930873
The third generation four valve lean combustion engine controlled by newly designed combustion pressure sensor has been developed. This combustion sensor composed of a metal diaphragm and a thin silicone layer formed on devitron piece detects the combustion pressure in the No.1 cylinder. Comparing with the lean mixture sensor equipped in the first and second generation lean combustion engine, the lean misfire limit was detected directly with this sensor, and the lean operation range was expanded, which realized lower fuel consumption and NOx emission. The output torque fluctuation was minimized by precisely compensating the fuel supplied to individual cylinder based on the crank angle sensor signal. Separated dual intake ports, one with the swirl control valve and the other with helical port shape was designed and a twin spray injection nozzle was equipped between those ports. The swirl ratio was lowered from 2.2 to 1.7.
Technical Paper

Toyota Electronic Modulated Suspension (TEMS) System for the 1983 Soarer

1984-02-01
840341
TOYOTA MOTOR CORPORATION had developed the world's first microprocessor controlled suspension system, Toyota Electronic Modulated Suspension (TEMS), which is now being offered on the Toyota Soarer from Feb. '83. This system consists of sensors, switches, electronic control unit (ECU), actuators and shock absorbers. TEMS uses a microprocessor to adjust the damping forces of the front and rear shock absorbers. As a result, suspension can be tuned in two stages (hard and soft cushioning) and driver can choose three control modes (AUTO, SPORT, NORMAL). In AUTO mode, the TEMS system has achieved attitude controls (i.e. squat control, roll control and nosedive control). The TEMS system achieved a 15 - 30% decrease of squat, a 20 - 30% decrease of roll angle, a 10 - 30% decrease of nose-dive and a 30 - 40% decrease of shift-squat.
Technical Paper

Toyota EC-HYMATIC – A New Full Time 4WD System for Automatic Transmission

1989-02-01
890526
Toyota has developed a new full time 4WD system, called “EC-HYMATIC” or Electronically Controlled - HYdraulic Multi-plate clutch Active Traction Intelligent Control. This system permits an automatic torque transfer, depending on driving conditions, for front and rear wheels under control of the speed difference between the two. The system developed consists of a center differential, a speed difference control clutch system employing multi-plate clutch, and a gear set for rear axle drive. The speed difference control clutch system is controlled by a unique electro-hydraulic system using a microcomputer. An extensive use of computer simulations and vehicle test and evaluation has successfully developed an appropriate control strategy for the clutch system. The new 4WD system, EC-HYMATIC, considerably improves handling characteristics, traction performance and stability of a 4WD vehicle.
Technical Paper

Toyota Central Injection (Ci) System for Lean Combustion and High Transient Response

1985-10-01
851675
Lean mixture operation and high transient response has been accomplished by the introduction of newly designed Central Injection (Ci) system. This paper describes the effects of Ci design variables on its performance. Lean mixture operation has been attained by optimizing the injection interval, injection timing and fuel spray angle in order to improve the cylinder to cylinder air-fuel ratio distribution. Both air-fuel distribution and transient engine response are affected by the fuel spray angle. Widening the fuel spray angle improves the air-fuel distribution but worsen the transient engine response. This inconsistency has been solved by off-setting the injector away from the center axis of the throttle body and optimizing the fuel spray angle.
Technical Paper

Torque Converter Clutch Slip Control System

1995-02-01
950672
The torque converter clutch slip control system adopted in the Toyota A541E automatic transaxle engages the torque converter clutch by applying a steady slip speed to prevent the torque fluctuation of the engine to be transmitted to the drivetrain while enhancing the transmission efficiency of the torque converter. The feedback controller of the slip speed adopts the H∞ (H-Infinity) control theory which offers a high level of robust stability, and is the first of its kind in a mass produced component. As a result, a highly accurate and reliable system has been realized, contributing to large-scale fuel economy.
Technical Paper

Thin wall and lightweight cylinder block production technology

2000-06-12
2000-05-0067
The automobile industry currently faces many challenges which may greatly impact on its foundry operations. One of these challenges, consumers'' demand for greater fuel efficiency, can be met by reducing the weight of castings used in automobiles, and minimizing engineering tolerances. In answer to this particular demand, engine foundries have begun to either produce cylinder blocks or other castings with aluminum rather than cast iron. However, if a reduction in weight (thin wall and near-net shaping) can be realized with cast iron, there would be numerous merits from the perspective of cost and compactness and there would be much more flexibility in automotive parts design.
Technical Paper

The New Toyota 1.2-Liter ESTEC Turbocharged Direct Injection Gasoline Engine

2015-04-14
2015-01-1268
Toyota Motor Corporation is developing a series of engines belonging to its ESTEC (Economy with Superior Thermal Efficient Combustion) development concept. This paper describes the development of 8NR-FTS after the subsequent launch of the 2.0-liter DI Turbocharged 8AR-FTS. 8NR-FTS is a 1.2-liter inline 4-cylinder spark ignition downsized turbocharged direct injection (DI) gasoline engine. By following the same basic concepts as 8AR-FTS engine [1], the 8NR-FTS incorporates various fuel efficient technologies such as a cylinder head with an integrated exhaust manifold, the Atkinson cycle using the center-spooled variable valve timing with mid-position lock system (VVT-iW), and intensified in-cylinder turbulence to achieve high-speed combustion.
Technical Paper

The New 2.4-Liter Slant Engine, 2TZ-FE, for the Toyota Previa

1990-09-01
901717
This paper describes a new 2.4-liter 16-valve in-line four-cylinder engine, 2TZ-FE, which has been mounted horizontally on a new minivan, the TOYOTA PREVIA. This engine has the TOYOTA original compact 4-valve DOHC system (scissors gear mechanism), and TOYOTA's newest technologies, such as 75 deg. slant cylinder and Separated accessory Drive System. The compact configuration reduces the height of this engine to only 44Omm (17.3-inches). Engine location is under the flat floor on the midship rear-wheel-drive vehicle and allows the PREVIA to have a spacious cabin with walkthrough. Its high performance, 103kW at 500Orpm and 209Nm at 4000rpm, has been achieved through updated technologies, such as: Knock Controll System (KCS), well studied intake system and exhaust manifold which is made of stainless steel double pipe. At the same time, high reliability and quietness have been achieved for the 2TZ-FE by TOYOTA's updated technologies.
Technical Paper

The High-Speed In-Vehicle Network of Integrated Control System for Vehicle Dynamics

1991-02-01
910463
This paper describes the preliminary development of an on-board integration network for vehicle dynamics. The underlying philosophy is explained and the basic requirements are set forth. A design conforming to these requirements is presented and the experiments conducted to optimise the physical layer are described. An original token passing protocol is proposed for the access method and evaluated in comparison with the contention method by means of a specially devised simulation system.
Technical Paper

The Effect of Fuel Compounds on Pre-ignition under High Temperature and High Pressure Condition

2011-08-30
2011-01-1984
Turbocharged (TC) engines have been introduced these days to improve the fuel economy. It is considered that one possible issue of the TC engine is a pre-ignition at high engine speed because of high temperature and high pressure in the combustion chamber. This study shows the effect of fuel compounds on pre-ignition at 4400rpm. The experimental engine is a naturally-aspirated (NA) engine which is customized to imitate the cylinder temperature and pressure of TC engines. It is known that research octane number (RON) describes anti-knock quality well. Meanwhile the results show that pre-ignition characteristic at high engine speed is dominated by motor octane number (MON) and auto-ignition temperature (AIT) rather than RON.
Technical Paper

Study on Combustion Chamber Deposit Formation Mechanism -Influence of Fuel Components and Gasoline Detergents-

1997-05-01
971722
The combustion chamber deposit (CCD) forming tendency of gasoline components and detergents were investigated with laboratory tests ad engine dynamometer tests. In the dynamometer tests, the driving conditions under which fuels and detergents influence CCD formation were specified, and the effects of different gasoline components and detergent blends on CCD formation were examined. In the laboratory tests, the CCD forming process was investigated thoroughly [10]. The CCD forming tendency of aromatic compounds in gasoline were dependent not only on physical properties such as molecular weight, but also chemical structure (number or position of the alkyl substituents of aromatic molecules). As for oxygenates, engine dynamometer tests with MTBE blended gasoline yielded less CCD than the test without MTBE. The CCD forming tendency of detergents correlated with the thermal decompositon tendency of the detergent package and the concentration of the main agents.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Technical Paper

Study of White Smoke Reducing Techniques of Dl Diesel Engine

1997-02-24
970314
For diesel engines, the delay of injection timing causes the white smoke due to unburned fuel in cold conditions. To define the effective engineering against the white smoke, we studied this occurrence mechanism by observing the white smoke in the cylinder through the glass window, and quantitatively measuring some factors. As a result, it is found that the white smoke quantity is closely correlated with the wall adhesion quantity of injected fuel, and proved that the evaporation acceleration by restraint of the fuel adhesion to the combustion chamber wall is effective to reduce the white smoke.
Technical Paper

Study of Transient Oil Consumption of Automotive Engine

1989-09-01
892110
The oil consumption phenomena during transient engine operating condition is analyzed. The investigation of the oil consumption by means of the real-time oil consumption meter shows that higher intake manifold vacuum during engine-brake condition causes a larger amount of transient oil consumption. The reverse blowby gas flow into the combustion chamber from the crankcase is generated by the high vacuum under engine-brake condition. It is found that this reverse gas flow carries the oil into the chamber from the third land of the piston through the ring end gap of the compression rings. The oil on the piston skirt leaks into the third land through the clearance between the oil ring and the cylinder bore. The weakened bore-to-ring contact pressure by the piston slap motion increases the amount of the leakage oil. New ring sets and pistons are developed based on the results of this study.
Technical Paper

Study of Ignition System for Demand Voltage Reduction

2015-04-14
2015-01-0777
Improving the engine efficiency to respond to climate change and energy security issues is strongly required. In order to improve the engine efficiency, lower fuel consumption, and enhance engine performance, OEMs have been developing high compression ratio engines and downsized turbocharged engines. However, higher compression ratio and turbocharging cause cylinder pressure to increase, which in turn increases the demand voltage for ignition. To reduce the demand voltage, a new ignition system is developed that uses a high voltage Zener diode to maintain a constant output voltage. Maintaining a constant voltage higher than the static breakdown voltage helps limit the amount of overshoot produced during the spark event. This allows discharge to occur at a lower demand voltage than with conventional spark ignition systems. The results show that the maximum reduction in demand voltage is 3.5 kV when the engine is operated at 2800 rpm and 2.6 MPa break mean effective pressure.
X