Refine Your Search

Topic

Author

Search Results

Technical Paper

Toyota's New Shift-by-Wire System for Hybrid Vehicles

2004-03-08
2004-01-1112
In today's motorized society, various automotive technologies continue to evolve every day. Amid this trend, a new concept with respect to automatic transaxle gear-shifting has been developed. In order to materialize a new concept for shifting operation with a universal design in mind, a system has been developed: a shift-by-wire system developed specifically for hybrid vehicles. The greatest advantage of this new system is the lack of constraints associated with the conventional mechanical linkage to the transaxle. This allows freedom of design for the gear selection module. A revolutionary improvement in the ease of shifting has been realized by taking full advantage of this design freedom. In addition, this system contributes to an innovative design. For improved ease of operation, the operation force of the shift lever of this system has been dramatically reduced. For parking, the driver can engage the parking mechanism of the transaxle at the touch of a switch.
Technical Paper

Toyota New TNGA High-Efficiency Eight-Speed Automatic Transmission Direct Shift-8AT for FWD Vehicles

2017-03-28
2017-01-1093
The new eight-speed automatic transmission direct shift-8AT (UA80) is the first automatic transmission to be developed based on the Toyota New Global Architecture (TNGA) design philosophy. Commonizing or optimizing the main components of the UA80 enables compatibility with a wide torque range, including both inline 4-cylinder and V6 engines, while shortening development terms and minimizing investment. Additionally, it has superior packaging performance by optimizing the transmission size and arrangement achieving a low gravity center. It contributes to Vehicle’s attractiveness by improving driving performance and NVH. At the same time, it drastically improves fuel economy and quietness.
Technical Paper

Study of Large OSC Materials (Ln2O2SO4) on the Basis of Sulfur Redox Reaction

2009-04-20
2009-01-1071
Three-way catalyst shows high performance under stoichiometric atmosphere. The CeO2-ZrO2 based materials (CZ) are added as a buffer of O2 concentration. To improve the catalyst performance the larger O2 storage capacity (OSC) are needed. Theoretically, the sulfur oxidation-reduction reaction moves oxygen 8 times larger than cerium. We focused on this phenomenon and synthesized Ln2O2SO4 as a new OSC material. The experimental result under model gas shows that the OSC of Ln2O2SO4 is 5 times lager than CZ.
Technical Paper

Simultaneous PM and NOx Reduction System for Diesel Engines

2002-03-04
2002-01-0957
A new after-treatment system called DPNR (Diesel Particulate-NOx Reduction System) has been developed for simultaneous and continuous reduction of particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust gas. This system consists of both a new catalytic technology and a new diesel combustion technology which enables rich operating conditions in diesel engines. The catalytic converter for the DPNR has a newly developed porous ceramic structure coated with a NOx storage reduction catalyst. A fresh DPNR catalyst reduced more than 80 % of both PM and NOx. This paper describes the concept and performance of the system in detail. Especially, the details of the PM oxidation mechanism in DPNR are described.
Journal Article

Reaction Mechanism Analysis of Di-Air-Contributions of Hydrocarbons and Intermediates

2012-09-10
2012-01-1744
The details of Di-Air, a new NOx reduction system using continuous short pulse injections of hydrocarbons (HC) in front of a NOx storage and reduction (NSR) catalyst, have already been reported. This paper describes further studies into the deNOx mechanism, mainly from the standpoint of the contribution of HC and intermediates. In the process of a preliminary survey regarding HC oxidation behavior at the moment of injection, it was found that HC have unique advantages as a reductant. The addition of HC lead to the reduction or metallization of platinum group metals (PGM) while keeping the overall gas atmosphere in a lean state due to adsorbed HC. This causes local O₂ inhibition and generates reductive intermediate species such as R-NCO. Therefore, the specific benefits of HC were analyzed from the viewpoints of 1) the impact on the PGM state, 2) the characterization of intermediate species, and 3) Di-Air performance compared to other reductants.
Technical Paper

New Drivetrain for Toyota's Flagship Lexus LFA Sports Car

2011-04-12
2011-01-1427
Toyota Motor Corporation has developed a new drivetrain for their flagship Lexus LFA sports car. Passionate driving experience was pursued at the forefront of development. Superior vehicle performance, handling, and responsiveness that seem to anticipate the driver's intentions are achieved. Special vehicle packaging and component placement are adopted in the LFA in order to realize such performance. The engine, clutch, and front counter gear are positioned at the front of the vehicle, and the transaxle at the rear. The engine and transaxle are connected by a rigid torque tube. The transaxle is an automated manual transmission equipped with an electrohydraulic actuator for controlling both the shift and clutch operations. This actuator enables accurate control of the transmission and extremely quick response to shift paddle operation by the driver. This paper describes a general outline of the drivetrain and each component that has significantly contributed to LFA product appeal.
Technical Paper

Improvement of NOx Storage-Reduction Catalyst

2007-04-16
2007-01-1056
In order to enhance the catalytic performance of the NOx Storage-Reduction Catalyst (NSR Catalyst), the sulfur tolerance of the NSR catalyst was improved by developing new support and NOx storage materials. The support material was developed by nano-particle mixing of ZrO2-TiO2 and Al2O3 in order to increase the Al2O3-TiO2 interface and to prevent the ZrO2-TiO2 phase from sintering. A Ba-Ti oxide composite material was also developed as a new NOx storage material containing highly dispersed Ba. It was confirmed that the sulfur tolerance and activity of the developed NSR catalyst are superior to that of the conventional one.
Technical Paper

Improvement of Heat Resistance for Bioplastics

2003-03-03
2003-01-1124
We studied the adoption of plastics derived from plants (bioplastics) such as poly(lactic acid) (PLA) for automotive parts in order to contribute to suppressing the increase in CO, emissions. For this application. major improvements of heat and impact resistance are needed. As a method to improve heat resistance, we developed PLA combined with clay of high heat resistance. As a result. we succeeded in synthesizing a PLA-clay nanocomposite using 18(OH)2-Mont. In-mold crystallization of PLA-clay nanocomposite lead to the great suppression of storage modulus decrease at high temperature. which in turn improved the heat resistance of PLA.
Technical Paper

Hexagonal Cell Ceramic Substrates for Lower Emission and Backpressure

2008-04-14
2008-01-0805
Stringent emission regulations call for advanced catalyst substrates with thinner walls and higher cell density. However, substrates with higher cell density increase backpressure, thinner cell wall substrates have lower mechanical characteristics. Therefore we will focus on cell configurations that will show a positive effect on backpressure and emission performance. We found that hexagonal cells have a greater effect on emission and backpressure performance versus square or round cell configurations. This paper will describe in detail the advantage of hexagonal cell configuration versus round or square configurations with respect to the following features: 1 High Oxygen Storage Capacity (OSC) performance due to uniformity of the catalyst coating layer 2 Low backpressure due to the large hydraulic diameter of the catalyst cell 3 Quick light off characteristics due to efficient heat transfer and low thermal mass
Technical Paper

Fuel Property Requirement for Advanced Technology Engines

2000-06-19
2000-01-2019
The effects of gasoline fuel properties on exhaust emissions were investigated. Port injection LEVs, a ULEV, a prototype SULEV which were equipped with three–way (3–way) catalysts and also two vehicles with direct injection spark ignition (DISI) engines equipped with NOx storage reduction (NSR) catalysts were tested. Fuel sulfur showed a large effect on exhaust emissions in all the systems. In the case of the DISI engine with the NSR catalyst, NOx conversion efficiency and also regeneration from sulfur poisoning were dramatically improved by reducing sulfur from 30ppm to 8ppm. Distillation properties also affected the HC emissions significantly. The HC emissions increased in both the LEV and the ULEV with a driveability index (DI) higher than about 1150 (deg.F). The ULEV was more sensitive than the LEV. These results show that fuel properties will be important for future technologies required to meet stringent emission regulations.
Technical Paper

Effects of Bio-Fuels on Vehicle Performance: Degradation Mechanism Analysis of Bio-Fuels

2004-10-25
2004-01-3031
In recent years, alternative sources of fuel are receiving a lot of attention in the automotive industry. Fuels derived from an agricultural feedstock are an attractive option. Bio-fuels based on vegetable oils offer the advantage being a sustainable, annually renewable source of automobile fuel. One of key issues in using vegetable oil based fuels is its oxidation stability. Since diesel fuels from fossil oil have good oxidation stability, automobile companies have not considered fuel degradation when developing diesel engines and vehicles as compared with gasoline engines. This paper presents the results of oxidation stability testing on bio-fuels. Oxidation stability was determined using three test methods, ASTM D525, EN14112 and ASTM D2274. The effects of storage condition, bio-fuel composition and antioxidants on the degradation of bio-fuels were all investigated. ASTM D525 is an effective test method to determine the effects of storage condition on bio-fuels stability.
Technical Paper

Development of the New 2.0L Hybrid System for Prius

2023-04-11
2023-01-0474
It is necessary for us to reduce CO2 emissions in order to hold down global warming which is advancing year by year. Toyota Motor Corporation believes that not only the introduction of BEVs but also the sale of the hybrid vehicles must spread in order to achieve the necessary CO2 reduction. Therefore, we planned to improve the attractiveness of future hybrid vehicles. Prius has always made full use of hybrid technologies and leading to significant CO2 reduction. Toyota Motor Corporation has developed a 2.0L hybrid system for the new Prius. We built the system which could achieve a comfortable drive along following the customer’s intention while improving the fuel economy more than a conventional system. The engine improves on both output and thermal efficiency. The transaxle decreases mechanical loss by downsizing the differential, and adoption of low viscosity oil.
Journal Article

Development of iQ with CVT for USA

2011-04-12
2011-01-1425
TOYOTA has developed the iQ with a 1.3L engine for the Scion brand in USA. Due to the importance of fun-to-drive factor for the Scion brand image, a responsive driving performance is required even with compact packaging and a small engine. In addition, because of the recent attention to global-warming and energy issues on a global scale, development of vehicles with high fuel economy is one of the most important issues for a car manufacturer. Therefore, it is necessary for a vehicle to have both high driving performance and fuel economy. TOYOTA has adopted the CVT-i as the transmission for this purpose. The following were achieved by adopting the CVT-i as the transmission for the iQ(1.3L). 1 Responsive driving performance with shift changes without a time lag. 2 Compact transmission for efficient vehicle packaging 3 Class-leading fuel economy performance. Moreover, it was developed with adjustments for the US market by improving the shift schedule for a linear acceleration feel.
Journal Article

Development of Transaxle Fluid for Electrification Vehicles: Design of Novel Additive Formulation

2022-08-30
2022-01-1102
To achieve carbon neutrality by reducing carbon dioxide (CO2) emissions, vehicles with an internal combustion engine have started to be replaced by electrification vehicles such as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), and battery EVs (BEVs) worldwide, which have motors in their transaxles (T/As). Reducing transmission torque loss in the transaxles is effective to reduce CO2 emissions, and lowering the viscosity of lubrication fluids in T/As is a promising method for reducing churning and drag loss. However, lowering viscosity generally leads to thin oil films and makes the lubrication condition severe, resulting in worse anti-fatigue and anti-seizure performance. To deal with these issues, we made improvements on the additive formulation of fluid, such as the addition of an oil-film-forming polymer, chemical structure change of calcium detergents, and an increase of anti-wear additives including phosphorus and sulfur.
Technical Paper

Development of Next Generation Fuel-Cell Hybrid System - Consideration of High Voltage System -

2004-03-08
2004-01-1304
Toyota Motor Corporation began leasing a new generation fuel cell vehicle the FCHV (Fuel Cell Hybrid Vehicle) in December 2002. That vehicle includes a new variable voltage power electronics system and uses the Nickel Metal Hydride (Ni-MH) battery system from the Prius hybrid gasoline electric vehicle. This paper describes on-going efforts to model optimum secondary storage systems for future vehicles. Efficiency modeling is presented for the base Ni-MH storage system, an ultra capacitor system and a Lithium ion (Li-ion) battery system. The Li-ion system in combination with a new high efficiency converter shows a 4% improvement in fuel economy relative to the base system. The ultra capacitor system is not as efficient as the base system.
Technical Paper

Development of New Plug-In Hybrid Transaxle for Compact-Class Vehicles

2017-03-28
2017-01-1151
To help respond to growing customer demand for environmentally friendly vehicles, a new transaxle for plug-in hybrid vehicles (PHVs) has been developed that achieves excellent fuel economy and ensures high performance when the PHV operates in electric vehicle (EV) mode. Under the basic concept of sharing a large number of parts with the transaxle in the all new Prius, the newly designed PHV transaxle was developed with the aim of enhancing EV power and range. To achieve our goal, the new transaxle uses a Dual Motor Drive System that operates the generator as a motor to supplement the existing motor. It also features an electrical oil pump (EOP) that improves cooling performance in EV mode. The developed transaxle helps to advance the PHV as a key next-generation environmentally friendly vehicle by maximizing the performance of the Toyota Hybrid System (THS) and achieving even better dynamic EV mode performance than the new Prius HV.
Journal Article

Development of New IGBT to Reduce Electrical Power Losses and Size of Power Control Unit for Hybrid Vehicles

2017-03-28
2017-01-1244
One way to improve the fuel efficiency of HVs is to reduce the losses and size of the Power Control Unit (PCU). To achieve this, it is important to reduce the losses of power devices (such as IGBTs and FWDs) used in the PCU since their losses account for about 20% of the total loss of an HV. Furthermore, another issue when reducing the size of power devices is ensuring the thermal feasibility of the downsized devices. To achieve the objectives of the 4th generation PCU, the following development targets were set for the IGBTs: reduce power losses by 19.8% and size by 30% compared to the 3rd generation. Power losses were reduced by the development of a new Super Body Layer (SBL) structure, which improved the trade-off relationship between switching and steady-state loss. This trade-off relationship was improved by optimizing the key SBL concentration parameter.
Technical Paper

Development of New Hybrid Transaxle for Sub-Compact-Class Vehicles

2012-04-16
2012-01-0623
Recently, due to mounting concerns regarding the environment and energy conservation, demand for compact and hybrid vehicles with good fuel economy has been increasing. Toyota Motor Corporation has developed its first hybrid transaxle for installation in sub-compact class vehicles. This new hybrid transaxle is both smaller and lighter than the P410 hybrid transaxle for compact class vehicles, including the 2009 Prius. This was accomplished by creating new designs of the gear train, motor, and motor cooling system, and by adopting advanced technology. This paper describes the major features and performance of this transaxle in detail.
Technical Paper

Development of New Hybrid Transaxle for Mid - Size Vehicle

2018-04-03
2018-01-0429
The new P710 hybrid transaxle for a mid-size 2.5-liter class vehicle was developed based on the Toyota New Global Architecture (TNGA) design philosophy to achieve a range of desired performance objects. A smaller and lighter transaxle with low mechanical loss was realized by incorporating a new gear train structure and a downsized motor. The noise of the P710 transaxle was also reduced by adopting a new damper structure.
Technical Paper

Development of New Hybrid Transaxle for Mid-Size Sports Utility Vehicles

2020-04-14
2020-01-0850
Toyota has developed a new Hybrid (HV) transaxle P810 for Mid-Size SUVs to improve fuel efficiency and power performance. The transaxle was developed based on Toyota's new development strategy - Toyota New Global Architecture (TNGA). By adopting technologies to shorten overall length of the transaxle, installation into the same engine compartment of Mid-Size sedans have been realized while also improving the motor output. This paper will introduce technologies regarding the new mount structure for shortening overall length, and furthermore, noise reduction related to this mount structure.
X