Refine Your Search

Topic

Author

Search Results

Technical Paper

The Power Performance and the Fuel Economy Estimation of HV for Vehicle Concept Planning Using VHDL-AMS Full Vehicle Simulation

2012-04-16
2012-01-1025
In order to reduce CO₂, Electric Vehicles (EV) and Hybrid Vehicles (HV) are effective. Those types of vehicles have powertrains from conventional vehicles. Those new powertrains drastically improve their efficiency from conventional vehicles keeping the same or superior power performance. On the other hand, those vehicles have an issue for thermal energy shortage during warming up process. The thermal energy is very large, and seriously affects the fuel economy for HV and the mileage for EV. In this paper, we propose VHDL-AMS multi-domain simulation technique for the estimation of the vehicle performance at the concept planning stage. The VHDL-AMS is IEEE and IEC standardized language, which supports not only multi-domain (physics) but also encryption. The common modeling language and encryption standard is indispensable for full-vehicle simulation.
Technical Paper

The New Toyota 2.4L L4 Turbo Engine with 8AT and 1-Motor Hybrid Electric Powertrains for Midsize Pickup Trucks

2024-04-09
2024-01-2089
Toyota has developed a new 2.4L L4 turbo (2.4L-T) engine with 8AT and 1-motor hybrid electric powertrains for midsize pickup trucks. The aim of these powertrains is to fulfill both strict fuel economy and emission regulations toward “Carbon Neutrality”, while exceeding customer expectations. The new 2.4L L4 turbocharged gasoline engine complies with severe Tier3 Bin30/LEVIII SULEV30 emission regulations for body-on-frame midsize pickup trucks improving both thermal efficiency and maximum torque. This engine is matched with a newly developed 8-speed automatic transmission with wide range and close step gear ratios and extended lock-up range to fulfill three trade-off performances: powerful driving, NVH and fuel economy. In addition, a 1-motor hybrid electric version is developed with a motor generator and disconnect clutch between the engine and transmission.
Technical Paper

Newly Developed Toyota Plug-in Hybrid System and its Vehicle Performance under Real Life Operation

2011-06-09
2011-37-0033
Toyota has been introducing several hybrid vehicles (HV) since 1997 as a countermeasure to the concerns raised by automobile, like CO2 reduction, energy security, and pollutant emission reduction in urban areas. Plug in hybrid Vehicle (PHV) uses electric energy from grid rather than fuel for most short trips and therefore presents a next step forward towards an even more effective solution for these concerns. For longer trips, the PHV works as a conventional hybrid vehicle, providing all the benefits of Toyota full hybrid technology, such as low fuel consumption, user-friendliness and long cruising range. This paper describes a newly developed plug-in hybrid system and its vehicle performance. This system uses a Li-ion battery with high energy density and has an EV-range within usual trip length without sacrificing cabin space.
Technical Paper

New Method to Achieve High Hydraulic Pressure and Improved Gear Pump Performance in Active Height Control (AHC) System

2019-04-02
2019-01-0854
Vehicle weight reduction is becoming more and more important as increasingly stringent fuel economy regulations are introduced around the world. This development improved the hydraulic gear pump performance of the next-generation Active Height Control (AHC) suspension and achieved significant weight reduction of 5 kg by eliminating the auxiliary pump accumulator. To realize the necessary high-pressure with a high flow rate, the sealing performance of the pump at the tips of the gear teeth is very important. This was achieved by developing “breaking-in” technology that shaves away the aluminum housing using the gear teeth and creates zero clearance between the teeth tips and the housing. To reduce the frictional loss torque of the pump, which was identified as an issue of this technology, it was necessary to completely shave away the initial clearance in the breaking-in process.
Technical Paper

Low-Emission and Fuel-Efficient Exhaust System with New Air-Fuel Ratio Sensor

2020-04-14
2020-01-0655
This paper describes an exhaust system using a new air-fuel ratio (hereinafter, A/F) sensor that contributes to low emissions and low fuel consumption of gasoline engines. As the first technical feature, the water splash resistance of the A/F sensor has been substantially improved which allows A/F control to be enabled without delay during engine cold start. To realize this capability, it is important that the sensor characteristics are not affected by the condensed water generated in the exhaust pipe. Therefore, a technique that has the effectiveness of a water splash resistance layer with water repellent function is demonstrated. As the second technical feature, the power consumption of the sensor has been substantially reduced. This is achieved by improving thermal efficiency of the sensor that the element can be activated at a low temperature.
Technical Paper

Lightweight Design Enabled by Innovative CAE Based Development Method Using Topology Optimization

2024-04-09
2024-01-2454
Carbon neutrality has become a significant target. One essential parameter regarding energy consumption and emissions is the mass of vehicles. Lightweight design improves the result of vehicle life cycle assessment (LCA), increases efficiency, and can be a step towards sustainability and CO2 neutrality. Weight reduction through structural optimization is a challenging task. Typical design development procedures have to be overcome. Instead of just a facelift or the creation of a derivative of the predecessor design, completely alternative design creation methods have to be applied. Automated structural optimization is one tool for exploring completely new design approaches. Different methods are available and weight reduction is the focus of topology optimization. This paper describes a fatigue life homogenization method that enables the weight reduction of vehicle parts. The applied CAE process combines fatigue life prediction and topology optimization.
Technical Paper

LED Headlamp Development for Mass Production

2008-04-14
2008-01-0339
To meet the market requirement for headlamps having lower power consumption, high photometric performance and long life whilst providing new styling opportunities, it has been anticipated that LED light sources would provide the necessary technological basis. Against this backdrop, Koito has succeeded in developing the necessary headlamp technologies and commercializing the world's first headlamp utilizing white LED's. The key point is that the various challenges associated with the development of an LED headlamp such as the commercial application of a synthesized light distribution, control of the light axis structure for the multi-lamp system, development of adequate thermal management for the cooling of the LED's and the achievement of volume production of the lamps have been successfully overcome.
Technical Paper

Improvement of PN Filtration Efficiency of Coated GPF – Study of Improvement of PN Filtration Efficiency and Reduction of Pressure Drop

2023-09-29
2023-32-0124
This research aimed to improve the PN filtration efficiency of a catalyst coated gasoline particulate filter (cGPF) to meet the next generation of emissions regulations for internal combustion engines. This paper proposes a concept that improves the PN filtration performance while maintaining low pressure drop by forming a thin PM trap layer on the surface of the cGPF substrate. The design guidelines for the coating particle size and coating amount of the PM trap layer were investigated, and actual manufacturing issues were also identified. The validity of this concept and guidelines was then verified on an actual vehicle.
Technical Paper

Hexagonal Cell Ceramic Substrates for Lower Emission and Backpressure

2008-04-14
2008-01-0805
Stringent emission regulations call for advanced catalyst substrates with thinner walls and higher cell density. However, substrates with higher cell density increase backpressure, thinner cell wall substrates have lower mechanical characteristics. Therefore we will focus on cell configurations that will show a positive effect on backpressure and emission performance. We found that hexagonal cells have a greater effect on emission and backpressure performance versus square or round cell configurations. This paper will describe in detail the advantage of hexagonal cell configuration versus round or square configurations with respect to the following features: 1 High Oxygen Storage Capacity (OSC) performance due to uniformity of the catalyst coating layer 2 Low backpressure due to the large hydraulic diameter of the catalyst cell 3 Quick light off characteristics due to efficient heat transfer and low thermal mass
Technical Paper

HC Adsorber System for SULEVs of Large Volume Displacement

2007-04-16
2007-01-0929
A new HC adsorber system was developed to achieve California SULEV emission standards for a V8 5.0-liter engine application (i.e. LS600hL). A HC adsorber system was first released on 2001 PZEV Prius (1.5-liter engine) in U.S.A. For the 5.0L application the substrate volume of both catalyst and adsorber had to be enlarged for a large volume displacement. Prius-type adsorber system could not be adopted for LS600hL because of the problems of installation. So, a new constructional adsorber was proposed. However the increase of gas flow into the adsorber substrate was a problem for desorption. The gas flow into the adsorber substrate was found to be controllable by the specification adjustment of the “throat” and “retainer” parts of adsorber system. Thus the rapid desorption was successfully reduced, and the HC adsorber system achieved a 50% reduction of HC emission.
Technical Paper

Fuel Property Requirement for Advanced Technology Engines

2000-06-19
2000-01-2019
The effects of gasoline fuel properties on exhaust emissions were investigated. Port injection LEVs, a ULEV, a prototype SULEV which were equipped with three–way (3–way) catalysts and also two vehicles with direct injection spark ignition (DISI) engines equipped with NOx storage reduction (NSR) catalysts were tested. Fuel sulfur showed a large effect on exhaust emissions in all the systems. In the case of the DISI engine with the NSR catalyst, NOx conversion efficiency and also regeneration from sulfur poisoning were dramatically improved by reducing sulfur from 30ppm to 8ppm. Distillation properties also affected the HC emissions significantly. The HC emissions increased in both the LEV and the ULEV with a driveability index (DI) higher than about 1150 (deg.F). The ULEV was more sensitive than the LEV. These results show that fuel properties will be important for future technologies required to meet stringent emission regulations.
Technical Paper

Fuel Effects on SIDI Efficiency and Emissions

2003-10-27
2003-01-3186
Spark ignition direct injection (SIDI) engines have the potential to realize significant thermal efficiency improvements compared to conventional port fuel injection engines. The effects of fuel properties on efficiency and emissions have been investigated in a prototype of an Avensis Wagon equipped with a 2.0 liter, 4 cylinder spark ignition, direct injection (SIDI) engine designed to meet US 2000 emission standards. The vehicle employed a close coupled three-way catalyst and a NOx storage and reduction catalyst. Seven matrix fuels were blended to the same RON with varying levels of aromatics, olefins, ethanol, and volatility. Relative thermal efficiency, fuel economy, and tailpipe emissions were measured for the matrix fuels and a base fuel under the FTP LA4 driving cycle. The engine was operated in a lean burn mode in light load condition for approximately half of the driving cycle.
Technical Paper

Feasibility Study of Exhaust Emissions in a Natural Gas Diesel Dual Fuel (DDF) Engine

2012-09-10
2012-01-1649
The Diesel Dual Fuel (DDF) vehicle is one of the technologies to convert diesel vehicles for natural gas usage. The purpose of this research was to study the possibility of a DDF vehicle to meet emission standards for diesel vehicles. This research was done for small passenger vehicles and commercial vehicles. The exhaust emissions compliance of such vehicles in a New European Driving Cycle (NEDC) mode which was composed of Urban Driving Cycles (UDC) and an Extra Urban Driving Cycle (EUDC) was evaluated. (see APPENDIXFigure A1) In this study, the passenger vehicle engine, compliant with the EURO4 standard, was converted to a DDF engine. Engine bench tests under steady state conditions showed similar result to previous papers. Total hydrocarbon (HC) emission was extremely high, compared to diesel engine. The NEDC mode emissions of the DDF vehicle were estimated based on these engine bench test results.
Technical Paper

Experimental Demonstration of Smart Charging and Demand Response for Plug-in Electric Vehicles Based on SAE Standards

2015-04-14
2015-01-0301
In this paper, we present an implementation of smart charging systems for plug-in electric vehicles based on off-the-shelf communication protocols for smart grids including SAE J2836/2847/J2931 standards and SEP 2.0. In this system, the charging schedule is optimized so that it supplies sufficient electricity for the next trip and also minimizes the charging cost under given time-of-use rate structures while it follows demand response events requested by a utility. Also, users can control charging schedule and check the current status of charging through application software of tablet computers. To validate the effectiveness of the developed smart charging system, we conducted experimental demonstration in which a total of 10 customers of Duke Energy regularly used our developed system for approximately one year with simulated time-of-use rate structures and demand response events.
Technical Paper

Efficient Heat Pump System for PHEV/BEV

2017-03-28
2017-01-0188
As vehicle emission regulations become increasingly rigorous, the automotive industry is accelerating the development of electrified vehicle platforms such as Battery Electric Vehicles (BEV) and Plug-in Hybrid Electric Vehicles (PHEV). Since the available waste heat from these vehicles is limited, additional heat sources such as electric heaters are needed for cabin heating operation. The use of a heat pump system is one of the solutions to improve EV driving range at cold ambient conditions. In this study, an efficient gas-injection heat pump system has been developed, which achieves high cabin heating performance at low ambient temperature and dehumidification operation without the assistance of electric heaters in ’17 model year Prius Prime.
Technical Paper

Efficient Direct Yaw Moment Control during Acceleration and Deceleration While Turning (Second Report)

2016-04-05
2016-01-1677
Electric vehicles (EVs) are attracting attention due to growing awareness of environmental issues such as fossil fuel depletion and global warming. In particular, a wide range of research has examined how direct yaw moment controls (DYCs) can enhance the handling performance of EVs equipped with multiple in-wheel motors (IWMs) or the like. Recently, this research has focused on reducing energy consumption through driving force distribution control. The first report proposed a method to minimize energy consumption through an efficient DYC for extending the cruising range of a vehicle installed with four IWMs, and described the vehicle behavior with this control. Since motors allow high design flexibility, EVs can be developed with a variety of drive systems. For this reason, various driving force distribution control methods can be considered based on the adopted system.
Technical Paper

Effectiveness and Issues of Automotive Electric Power Generating System Using Solar Modules

2016-04-05
2016-01-1266
Solar and other green energy technologies are attracting attention as a means of helping to address global warming caused by CO2 and other emission gases. Countries, factories, and individual homes around the world have already introduced photovoltaic energy power sources, a trend that is likely to increase in the future. Electric vehicles powered from photovoltaic energy systems can help decrease the CO2 emmissions caused by vehicles. Unlike vehicles used for solar car racing, it is not easy to equip conventional vehicles with solar modules because the available area for module installation is very small to maintain cabin space, and the body lines of conventional vehicles are also usually slightly rounded. These factors decrease the performance of photovoltaic energy systems and prevent sufficient electric power generation. This research aimed to estimate the effectiveness of a solar module power generating system equipped on a conventional car, the Toyota Prius PHV.
Technical Paper

Driveability Improvement with Innovative Toyota 8 Speed Automatic Transmission Control

2017-03-28
2017-01-1109
To meet increasing driveability expectation and government stringent fuel economy regulations reducing CO2 emissions of passenger cars; Toyota developed a new 8-speed automatic transmission "Direct Shift-8AT". Direct Shift-8AT is the first stepped automatic transmission model based on “TNGA” philosophy. New models which received Direct Shift-8AT are the new Camry, Highlander and Sienna. Direct Shift-8AT has an innovative control method with gear train and torque converter models, providing enhanced driveability and fuel economy performance through high efficiency transmission technology. This paper describes details of the new technology and vehicle performance.
Journal Article

Development of a New Ceramic Substrate with Gas Flow Control Functionality

2017-03-28
2017-01-0919
Emission regulations in many countries and regions around the world are becoming stricter in reaction to the increasing awareness of environment protections, and it has now become necessary to improve the performance of catalytic converters to achieve these goals. A catalytic converter is composed of a catalytically active material coated onto a ceramic honeycomb-structured substrate. Honeycomb substrates play the role of ensuring intimate contact between the exhaust gas and the catalyst within the substrate’s flow channels. In recent years, high-load test cycles have been introduced which require increased robustness to maintain low emissions during the wide range of load changes. Therefore, it is extremely important to increase the probability of contact between the exhaust gas and catalyst. To achieve this contact, several measures were considered such as increasing active sites or geometrical surface areas by utilizing substrates with higher cell densities or larger volumes.
Technical Paper

Development of a Compact Adsorption Heat Pump System for Automotive Air Conditioning System

2016-04-05
2016-01-0181
In order to reduce the energy consumption of the automotive air conditioning system, adsorption heat pump (AHP) system is one of the key technologies. We have been developing compact AHP system utilizing the exhaust heat from the engine coolant system (80-100 °C), which can meet the requirements in the automotive application. However, AHP systems have not been practically used in automotive applications because of its low volumetric power density of the adsorber. The volumetric power density of the adsorber is proportional to sorption rate, packing density and latent heat. In general, the sorption rate is determined by mass transfer resistance in primary particle of an adsorbent and heat and mass transfer resistance in packed bed. In order to improve the volumetric power density of the adsorber, it is necessary to increase the production of the sorption rate and the packing density.
X