Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Vehicle Velocity Prediction Using Artificial Neural Network and Effect of Real World Signals on Prediction Window

2020-04-14
2020-01-0729
Prediction of vehicle velocity is important since it can realize improvements in the fuel economy/energy efficiency, drivability, and safety. Velocity prediction has been addressed in many publications. Several references considered deterministic and stochastic approaches such as Markov chain, autoregressive models, and artificial neural networks. There are numerous new sensor and signal technologies like vehicle-to-vehicle and vehicle-to-infrastructure communication that can be used to obtain inclusive datasets. Using these inclusive datasets of sensors in deep neural networks, high accuracy velocity predictions can be achieved. This research builds upon previous findings that Long Short-Term Memory (LSTM) deep neural networks provide low error velocity prediction. We developed an LSTM deep neural network that uses different groups of datasets collected in Fort Collins, Colorado.
Technical Paper

Vehicle Electrification in Chile: A Life Cycle Assessment and Techno-Economic Analysis Using Data Generated by Autonomie Vehicle Modeling Software

2018-04-03
2018-01-0660
The environmental implications of converting vehicles powered by Internal Combustion Engines (ICE) to battery powered and hybrid battery/ICE powered are evaluated for the case of Chile, one of the worldwide leaders in the production of lithium (Li) required for manufacturing of Li-ion batteries. The economic and environmental metrics were evaluated by techno-economic analysis (TEA) and Life Cycle Assessment (LCA) tools - SuperPro Designer and Gabi®/GREET® models. The system boundary includes both the renewable and nonrenewable energy sources available in Chile and well-to-pump energy consumptions and GHG emissions due to Li mining and Li-ion battery manufacturing. All the major input data required for TEA and LCA were generated using Autonomie vehicle modeling software. This study compares economic and environmental indicators of three vehicle models for the case of Chile including compact, mid-size, and a light duty truck.
Technical Paper

Synchronous and Open, Real World, Vehicle, ADAS, and Infrastructure Data Streams for Automotive Machine Learning Algorithms Research

2020-04-14
2020-01-0736
Prediction based optimal energy management systems are a topic of high interest in the automotive industry as an effective, low-cost option for improving vehicle fuel efficiency. With the continuing development of connected and autonomous vehicle (CAV) technology there are many data streams which may be leveraged by transportation stakeholders. The Suite of CAVs-derived data streams includes advanced driver-assistance (ADAS) derived information about surrounding vehicles, vehicle-to-vehicle (V2V) communications for real time and historical data, and vehicle-to-infrastructure (V2I) communications. The suite of CAVs-derived data streams have been demonstrated to enable improvements in system-level safety, emissions and fuel economy.
Technical Paper

Quantitative Resilience Assessment of GPS, IMU, and LiDAR Sensor Fusion for Vehicle Localization Using Resilience Engineering Theory

2023-04-11
2023-01-0576
Practical applications of recently developed sensor fusion algorithms perform poorly in the real world due to a lack of proper evaluation during development. Existing evaluation metrics do not properly address a wide variety of testing scenarios. This issue can be addressed using proactive performance measurements such as the tools of resilience engineering theory rather than reactive performance measurements such as root mean square error. Resilience engineering is an established discipline for evaluating proactive performance on complex socio-technical systems which has been underutilized for automated vehicle development and evaluation. In this study, we use resilience engineering metrics to assess the performance of a sensor fusion algorithm for vehicle localization. A Kalman Filter is used to fuse GPS, IMU and LiDAR data for vehicle localization in the CARLA simulator.
Technical Paper

Mobility Energy Productivity Evaluation of Prediction-Based Vehicle Powertrain Control Combined with Optimal Traffic Management

2022-03-29
2022-01-0141
Transportation vehicle and network system efficiency can be defined in two ways: 1) reduction of travel times across all the vehicles in the system, and 2) reduction in total energy consumed by all the vehicles in the system. The mechanisms to realize these efficiencies are treated as independent (i.e., vehicle and network domains) and, when combined, they have not been adequately studied to date. This research aims to integrate previously developed and published research on Predictive Optimal Energy Management Strategies (POEMS) and Intelligent Traffic Systems (ITS), to address the need for quantifying improvement in system efficiency resulting from simultaneous vehicle and network optimization. POEMS and ITS are partially independent methods which do not require each other to function but whose individual effectiveness may be affected by the presence of the other. In order to evaluate the system level efficiency improvements, the Mobility Energy Productivity (MEP) metric is used.
Technical Paper

High-Fidelity Heavy-Duty Vehicle Modeling Using Sparse Telematics Data

2022-03-29
2022-01-0527
Heavy-duty commercial vehicles consume a significant amount of energy due to their large size and mass, directly leading to vehicle operators prioritizing energy efficiency to reduce operational costs and comply with environmental regulations. One tool that can be used for the evaluation of energy efficiency in heavy-duty vehicles is the evaluation of energy efficiency using vehicle modeling and simulation. Simulation provides a path for energy efficiency improvement by allowing rapid experimentation of different vehicle characteristics on fuel consumption without the need for costly physical prototyping. The research presented in this paper focuses on using real-world, sparsely sampled telematics data from a large fleet of heavy-duty vehicles to create high-fidelity models for simulation. Samples in the telematics dataset are collected sporadically, resulting in sparse data with an infrequent and irregular sampling rate.
Technical Paper

Development of an Autonomous Vehicle Control Strategy Using a Single Camera and Deep Neural Networks

2018-04-03
2018-01-0035
Autonomous vehicle development has benefited from sanctioned competitions dating back to the original 2004 DARPA Grand Challenge. Since these competitions, fully autonomous vehicles have become much closer to significant real-world use with the majority of research focused on reliability, safety and cost reduction. Our research details the recent challenges experienced at the 2017 Self Racing Cars event where a team of international Udacity students worked together over a 6 week period, from team selection to race day. The team’s goal was to provide real-time vehicle control of steering, braking, and throttle through an end-to-end deep neural network. Multiple architectures were tested and used including convolutional neural networks (CNN) and recurrent neural networks (RNN). We began our work by modifying a Udacity driving simulator to collect data and develop training models which we implemented and trained on a laptop GPU.
Technical Paper

Autonomous Eco-Driving Evaluation of an Electric Vehicle on a Chassis Dynamometer

2023-04-11
2023-01-0715
Connected and Automated Vehicles (CAV) provide new prospects for energy-efficient driving due to their improved information accessibility, enhanced processing capacity, and precise control. The idea of the Eco-Driving (ED) control problem is to perform energy-efficient speed planning for a connected and automated vehicle using data obtained from high-resolution maps and Vehicle-to-Everything (V2X) communication. With the recent goal of commercialization of autonomous vehicle technology, more research has been done to the investigation of autonomous eco-driving control. Previous research for autonomous eco-driving control has shown that energy efficiency improvements can be achieved by using optimization techniques. Most of these studies are conducted through simulations, but many more physical vehicle integrated test application studies are needed.
Technical Paper

An Ultra-Light Heuristic Algorithm for Autonomous Optimal Eco-Driving

2023-04-11
2023-01-0679
Connected autonomy brings with it the means of significantly increasing vehicle Energy Economy (EE) through optimal Eco-Driving control. Much research has been conducted in the area of autonomous Eco-Driving control via various methods. Generally, proposed algorithms fall into the broad categories of rules-based controls, optimal controls, and meta-heuristics. Proposed algorithms also vary in cost function type with the 2-norm of acceleration being common. In a previous study the authors classified and implemented commonly represented methods from the literature using real-world data. Results from the study showed a tradeoff between EE improvement and run-time and that the best overall performers were meta-heuristics. Results also showed that cost functions sensitive to the 1-norm of acceleration led to better performance than those which directly minimize the 2-norm.
X